Hans-Peter MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/338273/publications.pdf

Version: 2024-02-01

96 papers

2,888 citations

218381 26 h-index 214527 47 g-index

96 all docs 96 docs citations

96 times ranked 3860 citing authors

#	Article	IF	CITATIONS
1	Involvement of cortico-efferent tracts in flail arm syndrome: a tract-of-interest-based DTI study. Journal of Neurology, 2022, 269, 2619-2626.	1.8	5
2	Clinicoanatomical substrates of selfish behaviour in amyotrophic lateral sclerosis – An observational cohort study. Cortex, 2022, 146, 261-270.	1.1	8
3	Links between ectopic and abdominal fat and systemic inflammation: New insights from the SHIP-Trend study. Digestive and Liver Disease, 2022, 54, 1030-1037.	0.4	3
4	Body fat compartment determination by encoder–decoder convolutional neural network: application to amyotrophic lateral sclerosis. Scientific Reports, 2022, 12, 5513.	1.6	1
5	Segmental alterations of the corpus callosum in motor neuron disease: A DTI and texture analysis in 575 patients. Neurolmage: Clinical, 2022, 35, 103061.	1.4	8
6	Relaxation-weighted ²³ Na magnetic resonance imaging maps regional patterns of abnormal sodium concentrations in amyotrophic lateral sclerosis. Therapeutic Advances in Chronic Disease, 2022, 13, 204062232211094.	1.1	4
7	Advanced magnetic resonance imaging to support clinical drug development for malignant glioma. Drug Discovery Today, 2021, 26, 429-441.	3.2	1
8	Segmental involvement of the corpus callosum in <i>C9orf72-</i> associated ALS: a tract of interest-based DTI study. Therapeutic Advances in Chronic Disease, 2021, 12, 204062232110029.	1.1	13
9	Eye movement alterations in presymptomatic C9orf72 expansion gene carriers. Journal of Neurology, 2021, 268, 3390-3399.	1.8	9
10	Disruption of orbitofrontal-hypothalamic projections in a murine ALS model and in human patients. Translational Neurodegeneration, 2021, 10, 17.	3.6	15
11	Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects. Nature Communications, 2021, 12, 3028.	5.8	28
12	Age-Related Alterations in DTI Metrics in the Human Brainâ€"Consequences for Age Correction. Frontiers in Aging Neuroscience, 2021, 13, 682109.	1.7	28
13	How to Arrange Follow-Up Time-Intervals for Longitudinal Brain MRI Studies in Neurodegenerative Diseases. Frontiers in Neuroscience, 2021, 15, 682812.	1.4	3
14	The ipsilateral silent period: an early diagnostic marker of callosal disconnection in ALS. Therapeutic Advances in Chronic Disease, 2021, 12, 204062232110440.	1.1	5
15	Feature selection from magnetic resonance imaging data in ALS: a systematic review. Therapeutic Advances in Chronic Disease, 2021, 12, 204062232110510.	1.1	15
16	Segmental Alterations of the Corpus Callosum in Progressive Supranuclear Palsy: A Multiparametric Magnetic Resonance Imaging Study. Frontiers in Aging Neuroscience, 2021, 13, 720634.	1.7	2
17	Multiparametric Microstructural MRI and Machine Learning Classification Yields High Diagnostic Accuracy in Amyotrophic Lateral Sclerosis: Proof of Concept. Frontiers in Neurology, 2021, 12, 745475.	1.1	11
18	The role of the gut microbiome in the association between habitual anthocyanin intake and visceral abdominal fat in population-level analysis. American Journal of Clinical Nutrition, 2020, 111, 340-350.	2.2	21

#	Article	IF	Citations
19	Severe white matter damage inSHANK3deficiency: a human and translational study. Annals of Clinical and Translational Neurology, 2020, 7, 46-58.	1.7	15
20	Longitudinal brain atrophy distribution in advanced Parkinson's disease: What makes the difference in "cognitive status―converters?. Human Brain Mapping, 2020, 41, 1416-1434.	1.9	28
21	A prospective harmonized multicenter DTI study of cerebral white matter degeneration in ALS. Neurology, 2020, 95, e943-e952.	1.5	45
22	Associations of a Panel of Adipokines with Fat Deposits and Metabolic Phenotypes in a General Population. Obesity, 2020, 28, 1550-1559.	1.5	6
23	Deficits in verbal fluency in presymptomatic <i>C9orf72</i> mutation gene carriersâ€"a developmental disorder. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1195-1200.	0.9	42
24	Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Frontiers in Neuroscience, 2020, 14, 734.	1.4	7
25	Differential functional connectivity in thalamic and dopaminergic pathways in restless legs syndrome: a meta-analysis. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642094167.	1.5	20
26	Adherence to a plant-based diet in relation to adipose tissue volumes and liver fat content. American Journal of Clinical Nutrition, 2020, 112, 354-363.	2.2	24
27	In vivo histopathological staging in C9orf72-associated ALS: A tract of interest DTI study. NeuroImage: Clinical, 2020, 27, 102298.	1.4	20
28	Focal alterations of the callosal area III in primary lateral sclerosis: An MRI planimetry and texture analysis. NeuroImage: Clinical, 2020, 26, 102223.	1.4	13
29	Histological correlates of postmortem ultra-high-resolution single-section MRI in cortical cerebral microinfarcts. Acta Neuropathologica Communications, 2020, 8, 33.	2.4	16
30	Advanced neuroimaging approaches in amyotrophic lateral sclerosis: refining the clinical diagnosis. Expert Review of Neurotherapeutics, 2020, 20, 237-249.	1.4	22
31	Morphological MRI investigations of the hypothalamus in 232 individuals with Parkinson's disease. Movement Disorders, 2019, 34, 1566-1570.	2.2	9
32	The same cortico-efferent tract involvement in progressive bulbar palsy and in â€~classical' ALS: A tract of interest-based MRI study. NeuroImage: Clinical, 2019, 24, 101979.	1.4	9
33	Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43G298S ALS mouse model. Translational Neurodegeneration, 2019, 8, 27.	3.6	13
34	10Kin1day: A Bottom-Up Neuroimaging Initiative. Frontiers in Neurology, 2019, 10, 425.	1.1	15
35	Structural brain signature of cognitive decline in Parkinson's disease: DTI-based evidence from the LANDSCAPE study. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641984344.	1.5	17
36	Shank3 Transgenic and Prenatal Zinc-Deficient Autism Mouse Models Show Convergent and Individual Alterations of Brain Structures in MRI. Frontiers in Neural Circuits, 2019, 13, 6.	1.4	27

#	Article	lF	Citations
37	Editorial: Computerized Magnetic Resonance Imaging-Based Neuroimaging of Neurodegenerative Diseases. Frontiers in Neurology, 2019, 10, 237.	1.1	1
38	Combined cerebral atrophy score in Huntington's disease based on atlas-based MRI volumetry: Sample size calculations for clinical trials. Parkinsonism and Related Disorders, 2019, 63, 179-184.	1.1	12
39	Clinical and neuroimaging disparity between Chinese and German patients with cerebral small vessel disease: a comparative study. Scientific Reports, 2019, 9, 20015.	1.6	10
40	Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 157-164.	0.9	174
41	Dietary pattern associated with selenoprotein P and MRI-derived body fat volumes, liver signal intensity, and metabolic disorders. European Journal of Nutrition, 2019, 58, 1067-1079.	1.8	11
42	Cognitive phenotypes of sequential staging in amyotrophic lateral sclerosis. Cortex, 2018, 101, 163-171.	1.1	46
43	The metabolic and endocrine characteristics in spinal and bulbar muscular atrophy. Journal of Neurology, 2018, 265, 1026-1036.	1.8	29
44	Hyperconnective and hypoconnective cortical and subcortical functional networks in multiple system atrophy. Parkinsonism and Related Disorders, 2018, 49, 75-80.	1.1	23
45	Fast progressive lower motor neuron disease is an ALS variant: A two-centre tract of interest-based MRI data analysis. NeuroImage: Clinical, 2018, 17, 145-152.	1.4	35
46	Imaging the pathoanatomy of amyotrophic lateral sclerosis in vivo: targeting a propagation-based biological marker. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 374-381.	0.9	74
47	Cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: A two-centre tract of interest-based DTI analysis. NeuroImage: Clinical, 2018, 20, 1062-1069.	1.4	15
48	MRI-Based Mapping of Cerebral Propagation in Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2018, 12, 655.	1.4	13
49	Corticoefferent pathology distribution in amyotrophic lateral sclerosis: in vivo evidence from a meta-analysis of diffusion tensor imaging data. Scientific Reports, 2018, 8, 15389.	1.6	23
50	Identical patterns of cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: A tract of interest-based MRI study. NeuroImage: Clinical, 2018, 18, 762-769.	1.4	25
51	Longitudinal Diffusion Tensor Imaging Resembles Patterns of Pathology Progression in Behavioral Variant Frontotemporal Dementia (bvFTD). Frontiers in Aging Neuroscience, 2018, 10, 47.	1.7	13
52	Structural and Functional Brain Mapping Correlates of Impaired Eye Movement Control in Parkinsonian Syndromes: A Systems-Based Concept. Frontiers in Neurology, 2018, 9, 319.	1.1	9
53	Circulating selenoprotein P levels in relation to MRIâ€derived body fat volumes, liver fat content, and metabolic disorders. Obesity, 2017, 25, 1128-1135.	1.5	19
54	Intrinsic functional connectivity alterations in progressive supranuclear palsy: Differential effects in frontal cortex, motor, and midbrain networks. Movement Disorders, 2017, 32, 1006-1015.	2.2	24

#	Article	IF	CITATIONS
55	Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 1033-1041.	0.9	113
56	Intact sensory-motor network structure and function in far from onset premanifest Huntington's disease. Scientific Reports, 2017, 7, 43841.	1.6	11
57	Regional microstructural damage and patterns of eye movement impairment: a DTI and video-oculography study in neurodegenerative parkinsonian syndromes. Journal of Neurology, 2017, 264, 1919-1928.	1.8	13
58	Association of Vitamin E Levels with Metabolic Syndrome, and MRI-Derived Body Fat Volumes and Liver Fat Content. Nutrients, 2017, 9, 1143.	1.7	33
59	Functional Connectivity Mapping in the Animal Model: Principles and Applications of Resting-State fMRI. Frontiers in Neurology, 2017, 8, 200.	1.1	78
60	Cerebral Microstructural Alterations after Radiation Therapy in High-Grade Glioma: A Diffusion Tensor Imaging-Based Study. Frontiers in Neurology, 2017, 8, 286.	1.1	15
61	Longitudinal Diffusion Tensor Imaging-Based Assessment of Tract Alterations: An Application to Amyotrophic Lateral Sclerosis. Frontiers in Human Neuroscience, 2017, 11, 567.	1.0	26
62	Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, jnnp-2015-311387.	0.9	207
63	Functional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis. Scientific Reports, 2016, 6, 38391.	1.6	63
64	Body fat distribution in Parkinson's disease: An MRI-based body fat quantification study. Parkinsonism and Related Disorders, 2016, 33, 84-89.	1.1	18
65	Corticoefferent pathways in pure lower motor neuron disease: a diffusion tensor imaging study. Journal of Neurology, 2016, 263, 2430-2437.	1.8	30
66	The neuropsychology of first impressions: Evidence from Huntington's disease. Cortex, 2016, 85, 100-115.	1.1	21
67	Microstructure of the Midbrain and Cervical Spinal Cord in Idiopathic Restless Legs Syndrome: A Diffusion Tensor Imaging Study. Sleep, 2016, 39, 423-428.	0.6	14
68	Computer-based magnetic resonance imaging as a tool in clinical diagnosis in neurodegenerative diseases. Expert Review of Neurotherapeutics, 2016, 16, 295-306.	1.4	20
69	Motor network structure and function are associated with motor performance in Huntington's disease. Journal of Neurology, 2016, 263, 539-549.	1.8	30
70	Patterns of increased intrinsic functional connectivity in patients with restless legs syndrome are associated with attentional control of sensory inputs. Neuroscience Letters, 2016, 617, 264-269.	1.0	31
71	A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 570-579.	0.9	138
72	The association between alterations of eye movement control and cerebral intrinsic functional connectivity in Parkinson's disease. Brain Imaging and Behavior, 2016, 10, 79-91.	1.1	36

#	Article	IF	CITATIONS
73	Association of food consumption with total volumes of visceral and subcutaneous abdominal adipose tissue in a Northern German population. British Journal of Nutrition, 2015, 114, 1929-1940.	1.2	10
74	Adipose Tissue Distribution in Patients withÂAlzheimer's Disease: A Whole Body MRI Case-Control Study. Journal of Alzheimer's Disease, 2015, 48, 825-832.	1.2	18
75	Eye Movement Deficits Are Consistent with a Staging Model of pTDP-43 Pathology in Amyotrophic Lateral Sclerosis. PLoS ONE, 2015, 10, e0142546.	1.1	44
76	Association of Habitual Patterns and Types of Physical Activity and Inactivity with MRI-Determined Total Volumes of Visceral and Subcutaneous Abdominal Adipose Tissue in a General White Population. PLoS ONE, 2015, 10, e0143925.	1.1	5
77	Ex post facto assessment of diffusion tensor imaging metrics from different MRI protocols: Preparing for multicentre studies in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 92-101.	1.1	27
78	To rise and to fall: functional connectivity in cognitively normal and cognitively impaired patients with Parkinson's disease. Neurobiology of Aging, 2015, 36, 1727-1735.	1.5	119
79	MRI-determined total volumes of visceral and subcutaneous abdominal and trunk adipose tissue are differentially and sex-dependently associated with patterns of estimated usual nutrient intake in a northern German population. American Journal of Clinical Nutrition, 2015, 101, 794-807.	2.2	31
80	Two-Point Magnitude MRI for Rapid Mapping of Brown Adipose Tissue and Its Application to the R6/2 Mouse Model of Huntington Disease. PLoS ONE, 2014, 9, e105556.	1.1	15
81	Intrinsic Functional Connectivity Networks in Healthy Elderly Subjects: A Multiparametric Approach with Structural Connectivity Analysis. BioMed Research International, 2014, 2014, 1-14.	0.9	17
82	Impact of the control for corrupted diffusion tensor imaging data in comparisons at the group level: an application in Huntington disease. BioMedical Engineering OnLine, 2014, 13, 128.	1.3	11
83	Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. Brain, 2014, 137, 1733-1740.	3.7	179
84	Evaluating multicenter DTI data in Huntington's disease on site specific effects: An ex post facto approach. Neurolmage: Clinical, 2013, 2, 161-167.	1.4	28
85	MRI allows for longitudinal quantitative analysis of body fat composition in rats: An analysis of sibutramine-associated changes at the group level. Magnetic Resonance Imaging, 2013, 31, 1150-1155.	1.0	3
86	Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases. Journal of Visualized Experiments, 2013, , .	0.2	41
87	Diffusion Tensor Magnetic Resonance Imaging of the Brain in APP Transgenic Mice: A Cohort Study. PLoS ONE, 2013, 8, e67630.	1.1	19
88	Neuroimaging of motor neuron diseases. Therapeutic Advances in Neurological Disorders, 2012, 5, 119-127.	1.5	29
89	Neuroanatomical patterns of cerebral white matter involvement in different motor neuron diseases as studied by diffusion tensor imaging analysis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 254-264.	2.3	50
90	Fast Diffusion Tensor Magnetic Resonance Imaging of the Mouse Brain at Ultrahigh-Field: Aiming at Cohort Studies. PLoS ONE, 2012, 7, e53389.	1.1	12

#	Article	IF	CITATIONS
91	Complementary Image Analysis of Diffusion Tensor Imaging and 3-Dimensional T1-Weighted Imaging: White Matter Analysis in Amyotrophic Lateral Sclerosis., 2011, 21, 24-33.		10
92	Quantification of human body fat tissue percentage by MRI. NMR in Biomedicine, 2011, 24, 17-24.	1.6	58
93	Stability of white matter changes related to Huntington's disease in the presence of imaging noise: a DTI study. PLOS Currents, 2011, 3, RRN1232.	1.4	19
94	Stability effects on results of diffusion tensor imaging analysis by reduction of the number of gradient directions due to motion artifacts: an application to presymptomatic Huntington's disease. PLOS Currents, 2011, 3, RRN1292.	1.4	19
95	Whole brainâ€based analysis of regional white matter tract alterations in rare motor neuron diseases by diffusion tensor imaging. Human Brain Mapping, 2010, 31, 1727-1740.	1.9	102
96	Intersubject variability in the analysis of diffusion tensor images at the group level: fractional anisotropy mapping and fiber tracking techniques. Magnetic Resonance Imaging, 2009, 27, 324-334.	1.0	41