
Samuel Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3382330/publications.pdf Version: 2024-02-01

SAMILEL HALL

#	Article	IF	CITATIONS
1	Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9, 5785-5812.	4.9	433
2	Why do models overestimate surface ozone in the Southeast United States?. Atmospheric Chemistry and Physics, 2016, 16, 13561-13577.	4.9	320
3	Airborne measurement of OH reactivity during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 163-173.	4.9	293
4	Chemistry of hydrogen oxide radicals (HO _x) in the Arctic troposphere in spring. Atmospheric Chemistry and Physics, 2010, 10, 5823-5838.	4.9	220
5	Ozone production rates as a function of NOxabundances and HOxproduction rates in the Nashville urban plume. Journal of Geophysical Research, 2002, 107, ACH 7-1.	3.3	207
6	OH and HO2concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999. Journal of Geophysical Research, 2003, 108, .	3.3	174
7	Rapid cycling of reactive nitrogen in the marine boundary layer. Nature, 2016, 532, 489-491.	27.8	159
8	Direct Measurements of the Convective Recycling of the Upper Troposphere. Science, 2007, 315, 816-820.	12.6	114
9	A comparison of Arctic BrO measurements by chemical ionization mass spectrometry and long path-differential optical absorption spectroscopy. Journal of Geophysical Research, 2011, 116, .	3.3	105
10	High levels of molecular chlorine in the Arctic atmosphere. Nature Geoscience, 2014, 7, 91-94.	12.9	105
11	Heterogeneous N ₂ O ₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4345-4372.	3.3	103
12	Measurements of OH, H2SO4, and MSA at the South Pole during ISCAT. Geophysical Research Letters, 2001, 28, 3629-3632.	4.0	101
13	First direct measurements of formaldehyde flux via eddy covariance: implications for missing in-canopy formaldehyde sources. Atmospheric Chemistry and Physics, 2011, 11, 10565-10578.	4.9	101
14	Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29469-29477.	7.1	100
15	Agricultural fires in the southeastern U.S. during SEAC ⁴ RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7383-7414.	3.3	93
16	Use of proton-transfer-reaction mass spectrometry to characterize volatile organic compound sources at the La Porte super site during the Texas Air Quality Study 2000. Journal of Geophysical Research, 2003, 108, .	3.3	91
17	Active and widespread halogen chemistry in the tropical and subtropical free troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9281-9286.	7.1	91
18	Detection of iodine monoxide in the tropical free troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2035-2040.	7.1	88

#	Article	IF	CITATIONS
19	Influence of oil and gas emissions on summertime ozone in the Colorado Northern Front Range. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8712-8729.	3.3	86
20	Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmospheric Chemistry and Physics, 2010, 10, 6195-6212.	4.9	82
21	Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NO _{<i>x</i>} . Environmental Science & Technology, 2018, 52, 13738-13746.	10.0	79
22	Observations of inorganic bromine (HOBr, BrO, and Br ₂) speciation at Barrow, Alaska, in spring 2009. Journal of Geophysical Research, 2012, 117, .	3.3	71
23	Nitrous acid (HONO) during polar spring in Barrow, Alaska: A net source of OH radicals?. Journal of Geophysical Research, 2011, 116, .	3.3	69
24	Evaluation of HO _x sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem. Atmospheric Chemistry and Physics, 2013, 13, 2031-2044.	4.9	62
25	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmospheric Chemistry and Physics, 2015, 15, 6721-6744.	4.9	62
26	Quantitative detection of iodine in the stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1860-1866.	7.1	61
27	The relative importance of chlorine and bromine radicals in the oxidation of atmospheric mercury at Barrow, Alaska. Journal of Geophysical Research, 2012, 117, .	3.3	59
28	Impact of clouds and aerosols on photolysis frequencies and photochemistry during TRACE-P: 1. Analysis using radiative transfer and photochemical box models. Journal of Geophysical Research, 2003, 108, .	3.3	58
29	Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11171-11180.	7.1	58
30	Missing peroxy radical sources within a summertime ponderosa pine forest. Atmospheric Chemistry and Physics, 2014, 14, 4715-4732.	4.9	56
31	Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations. Geophysical Research Letters, 2015, 42, 8231-8240.	4.0	53
32	Photolysis frequency of NO2: Measurement and modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI). Journal of Geophysical Research, 2003, 108, .	3.3	52
33	Global and regional effects of the photochemistry of CH ₃ O ₂ NO <sub& evidence from ARCTAS. Atmospheric Chemistry and Physics, 2011, 11, 4209-4219.</sub& 	am p;g t;2&	amp3lt;/sub&
34	HONO Emissions from Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke. Environmental Science & Technology, 2020, 54, 5954-5963.	10.0	51
35	The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment. Bulletin of the American Meteorological Society, 2017, 98, 106-128.	3.3	50
36	Cloud System Evolution in the Trades (CSET): Following the Evolution of Boundary Layer Cloud Systems with the NSF–NCAR GV. Bulletin of the American Meteorological Society, 2019, 100, 93-121.	3.3	49

#	Article	IF	CITATIONS
37	Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9849-9861.	3.3	48
38	International Photolysis Frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling. Journal of Geophysical Research, 2003, 108, .	3.3	47
39	Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US. Atmospheric Chemistry and Physics, 2020, 20, 3739-3776.	4.9	47
40	Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILACRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds. Atmospheric Chemistry and Physics, 2011, 11, 11867-11894.	4.9	46
41	Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.	10.3	45
42	Light penetration in the snowpack at Summit, Greenland: Part 2 Nitrate photolysis. Atmospheric Environment, 2007, 41, 5091-5100.	4.1	44
43	Comparison of airborne measured and calculated spectral actinic flux and derived photolysis frequencies during the PEM Tropics B mission. Journal of Geophysical Research, 2003, 108, PEM 6-1.	3.3	42
44	Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS. Atmospheric Chemistry and Physics, 2012, 12, 10505-10518.	4.9	41
45	Atmospheric Acetaldehyde: Importance of Airâ€Sea Exchange and a Missing Source in the Remote Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.	4.0	41
46	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	3.3	39
47	Light penetration in the snowpack at Summit, Greenland: Part 1. Atmospheric Environment, 2007, 41, 5077-5090.	4.1	38
48	An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE. Atmospheric Chemistry and Physics, 2012, 12, 6799-6825.	4.9	38
49	Impact of Biomass Burning Plumes on Photolysis Rates and Ozone Formation at the Mount Bachelor Observatory. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2272-2284.	3.3	36
50	Stratospheric Injection of Brominated Very Shortâ€Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5690-5719.	3.3	36
51	Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033484.	3.3	36
52	Constraining remote oxidation capacity with ATom observations. Atmospheric Chemistry and Physics, 2020, 20, 7753-7781.	4.9	36
53	Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign. Journal of Geophysical Research, 2008, 113, .	3.3	35
	Measurements of		

54 CH<sub&gt;3&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;NO&lt;sub&gt;2&lt;/sub&a

#	Article	IF	CITATIONS
55	Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission. Atmospheric Chemistry and Physics, 2018, 18, 16809-16828.	4.9	34
56	Observed NO/NO ₂ Ratios in the Upper Troposphere Imply Errors in NOâ€NO ₂ â€O ₃ Cycling Kinetics or an Unaccounted NO _x Reservoir. Geophysical Research Letters, 2018, 45, 4466-4474.	4.0	34
57	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	4.9	34
58	Photolysis frequency of O3to O(1D): Measurements and modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI). Journal of Geophysical Research, 2004, 109, .	3.3	33
59	Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere. Atmospheric Chemistry and Physics, 2012, 12, 1135-1150.	4.9	33
60	A pervasive role for biomass burning in tropical high ozone/low water structures. Nature Communications, 2016, 7, 10267.	12.8	33
61	BrO and inferred Br _{<i>y</i>} profiles over the western Pacific: relevance of inorganic bromine sources and a Br _{<i>y</i>} minimum in the aged tropical tropopause laver. Atmospheric Chemistry and Physics. 2017. 17. 15245-15270.	4.9	33
62	Characteristics of the NO-NO ₂ -O ₃ system in different chemical regimes during the MIRAGE-Mex field campaign. Atmospheric Chemistry and Physics, 2008, 8, 7153-7164.	4.9	32
63	Formaldehyde in the Tropical Western Pacific: Chemical Sources and Sinks, Convective Transport, and Representation in CAMâ€Chem and the CCMI Models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11201-11226.	3.3	32
64	Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ). Elementa, 2020, 8, .	3.2	32
65	ClNO ₂ Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,994.	3.3	31
66	Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska. Atmospheric Chemistry and Physics, 2015, 15, 9651-9679.	4.9	29
67	Calculations of solar shortwave heating rates due to black carbon and ozone absorption using in situ measurements. Journal of Geophysical Research, 2008, 113, .	3.3	28
68	Rapid cloud removal of dimethyl sulfide oxidation products limits SO ₂ and cloud condensation nuclei production in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
69	Ultraviolet actinic flux in clear and cloudy atmospheres: model calculations and aircraft-based measurements. Atmospheric Chemistry and Physics, 2011, 11, 5457-5469.	4.9	26
70	Missing OH reactivity in the global marine boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 4013-4029.	4.9	25
71	Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016. Atmospheric Chemistry and Physics, 2019, 19, 12779-12795.	4.9	24
72	Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ). Atmospheric Chemistry and Physics, 2021, 21, 18319-18331.	4.9	24

#	Article	IF	CITATIONS
73	An overview of air-snow exchange at Summit, Greenland: Recent experiments and findings. Atmospheric Environment, 2007, 41, 4995-5006.	4.1	23
74	The NO _{<i>x</i>} dependence of bromine chemistry in the Arctic atmospheric boundary layer. Atmospheric Chemistry and Physics, 2015, 15, 10799-10809.	4.9	23
75	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.	2.5	23
76	Tropospheric sources and sinks of gas-phase acids in the Colorado Front Range. Atmospheric Chemistry and Physics, 2018, 18, 12315-12327.	4.9	23
77	Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031685.	3.3	23
78	Tropospheric HONO distribution and chemistry in the southeastern US. Atmospheric Chemistry and Physics, 2018, 18, 9107-9120.	4.9	22
79	Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	20
80	Effect of aerosols and NO ₂ concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations. Atmospheric Chemistry and Physics, 2013, 13, 1011-1022.	4.9	19
81	An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7461-7488.	3.3	18
82	Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study. Atmospheric Chemistry and Physics, 2018, 18, 14493-14510.	4.9	18
83	Photolysis frequency measurements at the South Pole during ISCAT-98. Geophysical Research Letters, 2001, 28, 3637-3640.	4.0	17
84	Global Atmospheric Budget of Acetone: Air‧ea Exchange and the Contribution to Hydroxyl Radicals. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032553.	3.3	17
85	Observations and Modeling of NO <i>_x</i> Photochemistry and Fate in Fresh Wildfire Plumes. ACS Earth and Space Chemistry, 2021, 5, 2652-2667.	2.7	17
86	Arctic springtime observations of volatile organic compounds during the OASISâ€2009 campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9789-9813.	3.3	16
87	Airborne measurements of BrO and the sum of HOBr and Br ₂ over the Tropical West Pacific from 1 to 15 km during the CONvective TRansport of Active Species in the Tropics (CONTRAST) experiment. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,560.	3.3	16
88	Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035203.	3.3	16
89	Comparison of airborne NO2photolysis frequency measurements during PEM-Tropics B. Journal of Geophysical Research, 2001, 106, 32645-32656.	3.3	14
90	PTRâ€MS observations of photoâ€enhanced VOC release from Arctic and midlatitude snow. Journal of Geophysical Research, 2012, 117, .	3.3	13

#	ARTICLE	IF	CITATIONS
91	Rates of Wintertime Atmospheric SO ₂ Oxidation based on Aircraft Observations during Clearâ€Sky Conditions over the Eastern United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6630-6649.	3.3	12
92	Improved modeling of cloudyâ€sky actinic flux using satellite cloud retrievals. Geophysical Research Letters, 2017, 44, 1592-1600.	4.0	11
93	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Technology, 2021, 55, 15646-15657.	10.0	11
94	Lowâ€ozone bubbles observed in the tropical tropopause layer during the TC4 campaign in 2007. Journal of Geophysical Research, 2010, 115, .	3.3	9
95	Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants. Atmospheric Chemistry and Physics, 2022, 22, 4253-4275.	4.9	9
96	Use of Airborne In Situ VOC Measurements to Estimate Transit Time Spectrum: An Observationâ€Based Diagnostic of Convective Transport. Geophysical Research Letters, 2018, 45, 13,150.	4.0	8
97	Spatially Resolved Photochemistry Impacts Emissions Estimates in Fresh Wildfire Plumes. Geophysical Research Letters, 2021, 48, e2021GL095443.	4.0	7
98	Column ozone and aerosol optical properties retrieved from direct solar irradiance measurements during SOLVE II. Atmospheric Chemistry and Physics, 2005, 5, 611-622.	4.9	6
99	Evolution of formaldehyde (HCHO) in a plume originating from a petrochemical industry and its volatile organic compounds (VOCs) emission rate estimation. Elementa, 2021, 9, .	3.2	6
100	Observations of atmospheric oxidation and ozone production in South Korea. Atmospheric Environment, 2022, 269, 118854.	4.1	6
101	The Role of Snow in Controlling Halogen Chemistry and Boundary Layer Oxidation During Arctic Spring: A 1D Modeling Case Study. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
102	The Impact of Smoke on the Ultraviolet and Visible Radiative Forcing Under Different Fire Regimes. Air, Soil and Water Research, 2018, 11, 117862211877480.	2.5	5
103	Wintertime Transport of Reactive Trace Gases From East Asia Into the Deep Tropics. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,877.	3.3	5
104	Wildfire-driven changes in the abundance of gas-phase pollutants in the city of Boise, ID during summer 2018. Atmospheric Pollution Research, 2022, 13, 101269.	3.8	5
105	Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol. Atmospheric Chemistry and Physics, 2022, 22, 805-821.	4.9	5
106	Ozone depletion due to dust release of iodine in the free troposphere. Science Advances, 2021, 7, eabj6544.	10.3	5
107	Deriving Tropospheric Transit Time Distributions Using Airborne Trace Gas Measurements: Uncertainty and Information Content. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034358.	3.3	2