
Dominique Loqué

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3382310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018, 3, 470-480.	13.3	1,268
2	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
3	Advances in modifying lignin for enhanced biofuel production. Current Opinion in Plant Biology, 2010, 13, 312-319.	7.1	211
4	Engineering secondary cell wall deposition in plants. Plant Biotechnology Journal, 2013, 11, 325-335.	8.3	200
5	Engineering of plant cell walls for enhanced biofuel production. Current Opinion in Plant Biology, 2015, 25, 151-161.	7.1	174
6	Isolation and Proteomic Characterization of the Arabidopsis Golgi Defines Functional and Novel Components Involved in Plant Cell Wall Biosynthesis Â. Plant Physiology, 2012, 159, 12-26.	4.8	164
7	Next-generation biomass feedstocks for biofuel production. Genome Biology, 2008, 9, 242.	9.6	144
8	Biosynthesis and incorporation of sideâ€chainâ€truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnology Journal, 2012, 10, 609-620.	8.3	140
9	Histochemical Staining of Arabidopsis thaliana Secondary Cell Wall Elements. Journal of Visualized Experiments, 2014, , .	0.3	137
10	A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2. Frontiers in Physiology, 2010, 1, 24.	2.8	131
11	Lignin bioengineering. Current Opinion in Biotechnology, 2014, 26, 189-198.	6.6	126
12	Lignin Valorization: Two Hybrid Biochemical Routes for the Conversion of Polymeric Lignin into Value-added Chemicals. Scientific Reports, 2017, 7, 8420.	3.3	110
13	Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants. Biotechnology for Biofuels, 2012, 5, 84.	6.2	97
14	AtAMT1;4, a Pollen-Specific High-Affinity Ammonium Transporter of the Plasma Membrane in Arabidopsis. Plant and Cell Physiology, 2009, 50, 13-25.	3.1	91
15	Expression of a bacterial 3â€dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnology Journal, 2015, 13, 1241-1250.	8.3	90
16	Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin. Plant and Cell Physiology, 2016, 57, 568-579.	3.1	78
17	Visualization of plant cell wall lignification using fluorescenceâ€ŧagged monolignols. Plant Journal, 2013, 76, 357-366.	5.7	70
18	The plant glycosyltransferase clone collection for functional genomics. Plant Journal, 2014, 79, 517-529.	5.7	67

Dominique Loqué

#	Article	IF	CITATIONS
19	SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum. PLoS ONE, 2017, 12, e0178160.	2.5	59
20	Design of orthogonal regulatory systems for modulating gene expression in plants. Nature Chemical Biology, 2020, 16, 857-865.	8.0	57
21	Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microbial Cell Factories, 2013, 12, 62.	4.0	48
22	Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops. Plant Journal, 2016, 87, 103-117.	5.7	44
23	Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2011, 89, 989-1000.	3.6	40
24	A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis. BMC Plant Biology, 2014, 14, 344.	3.6	40
25	A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. Biotechnology for Biofuels, 2019, 12, 130.	6.2	39
26	Overexpression of a rice BAHD acyltransferase gene in switchgrass (Panicum virgatum L.) enhances saccharification. BMC Biotechnology, 2018, 18, 54.	3.3	38
27	Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. Biotechnology for Biofuels, 2018, 11, 2.	6.2	38
28	Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls. Plant Biotechnology Journal, 2015, 13, 903-914.	8.3	37
29	Increased drought tolerance in plants engineered for low lignin and low xylan content. Biotechnology for Biofuels, 2018, 11, 195.	6.2	33
30	Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast. Microbial Cell Factories, 2016, 15, 198.	4.0	32
31	AtAPY1 and AtAPY2 Function as Golgi-Localized Nucleoside Diphosphatases in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 1913-1925.	3.1	30
32	A transgene design for enhancing oil content in Arabidopsis and Camelina seeds. Biotechnology for Biofuels, 2018, 11, 46.	6.2	23
33	Engineering Plant Synthetic Pathways for the Biosynthesis of Novel Antifungals. ACS Central Science, 2020, 6, 1394-1400.	11.3	22
34	Production of muconic acid in plants. Metabolic Engineering, 2018, 46, 13-19.	7.0	19
35	Biochemical characterization of <i>Arabidopsis</i> APYRASE family reveals their roles in regulating endomembrane NDP/NMP homoeostasis. Biochemical Journal, 2015, 472, 43-54.	3.7	18
36	Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants. ACS Synthetic Biology, 2017, 6, 806-816.	3.8	15

Dominique Loqué

#	Article	IF	CITATIONS
37	Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.). BMC Plant Biology, 2021, 21, 56.	3.6	14
38	Precursor-Directed Combinatorial Biosynthesis of Cinnamoyl, Dihydrocinnamoyl, and Benzoyl Anthranilates in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0138972.	2.5	14
39	A new approach to zipâ€lignin: 3,4â€dihydroxybenzoate is compatible with lignification. New Phytologist, 2022, 235, 234-246.	7.3	12
40	Tight regulation of plant immune responses by combining promoter and suicide exon elements. Nucleic Acids Research, 2015, 43, 7152-7161.	14.5	11
41	Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment. Biotechnology for Biofuels, 2015, 8, 95.	6.2	9
42	Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility. Frontiers in Bioengineering and Biotechnology, 2016, 4, 58.	4.1	8
43	Influence of hydrocracking and ionic liquid pretreatments on composition and properties of Arabidopsis thaliana wild type and CAD mutant lignins. Renewable Energy, 2020, 152, 1241-1249.	8.9	3