
Lucile Capuron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3382281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association between the indole pathway of tryptophan metabolism and subclinical depressive symptoms in obesity: a preliminary study. International Journal of Obesity, 2022, 46, 885-888.	1.6	12
2	High S100B Levels Predict Antidepressant Response in Patients With Major Depression Even When Considering Inflammatory and Metabolic Markers. International Journal of Neuropsychopharmacology, 2022, 25, 468-478.	1.0	6
3	Low omegaâ€3 polyunsaturated fatty acids predict reduced response to standard antidepressants in patients with major depressive disorder. Depression and Anxiety, 2022, 39, 407-418.	2.0	7
4	Circulating Human Serum Metabolites Derived from the Intake of a Saffron Extract (Safr'InsideTM) Protect Neurons from Oxidative Stress: Consideration for Depressive Disorders. Nutrients, 2022, 14, 1511.	1.7	12
5	Saffron Extract-Induced Improvement of Depressive-Like Behavior in Mice Is Associated with Modulation of Monoaminergic Neurotransmission. Nutrients, 2021, 13, 904.	1.7	17
6	Transcriptomic signaling pathways involved in a naturalistic model of inflammation-related depression and its remission. Translational Psychiatry, 2021, 11, 203.	2.4	8
7	Relationship between body mass index and neuropsychiatric symptoms: Evidence and inflammatory correlates. Brain, Behavior, and Immunity, 2021, 94, 104-110.	2.0	7
8	From gut to brain: Microbiota depletion in mice as a tool to explore causality. Brain, Behavior, and Immunity, 2021, 94, 4-5.	2.0	3
9	Influence of pro-obesogenic dietary habits on stress-induced cognitive alterations in healthy adult volunteers. Neurobiology of Stress, 2021, 15, 100353.	1.9	1
10	Prevention of Stress-Induced Depressive-like Behavior by Saffron Extract Is Associated with Modulation of Kynurenine Pathway and Monoamine Neurotransmission. Pharmaceutics, 2021, 13, 2155.	2.0	9
11	A new experimental design to study inflammation-related versus non-inflammation-related depression in mice. Journal of Neuroinflammation, 2021, 18, 290.	3.1	8
12	Tryptophan Metabolic Pathways Are Altered in Obesity and Are Associated With Systemic Inflammation. Frontiers in Immunology, 2020, 11, 557.	2.2	105
13	Polyphenols From Grape and Blueberry Improve Episodic Memory in Healthy Elderly with Lower Level of Memory Performance: A Bicentric Double-Blind, Randomized, Placebo-Controlled Clinical Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 996-1007.	1.7	62
14	Association of chronic inflammation and perceived stress with abnormal functional connectivity in brain areas involved with interoception in hepatitis C patients. Brain, Behavior, and Immunity, 2019, 80, 204-218.	2.0	7
15	Obesity and Depression: Shared Pathophysiology and Translational Implications. , 2019, , 169-183.		2
16	History of major depression is associated with neuropsychiatric symptoms but not systemic inflammation in a cross-sectional study in obese patients. Brain, Behavior, and Immunity, 2019, 76, 215-222.	2.0	4
17	Brain tumor necrosis factor-α mediates anxiety-like behavior in a mouse model of severe obesity. Brain, Behavior, and Immunity, 2019, 77, 25-36.	2.0	36
18	Depressive symptoms in obesity: Relative contribution of low-grade inflammation and metabolic health. Psychoneuroendocrinology, 2018, 91, 55-61.	1.3	50

LUCILE CAPURON

#	Article	IF	CITATIONS
19	Assessment of Translocator Protein Density, as Marker of Neuroinflammation, in Major Depressive Disorder: A Pilot, Multicenter, Comparative, Controlled, Brain PET Study (INFLADEP Study). Frontiers in Psychiatry, 2018, 9, 326.	1.3	14
20	Brain Kynurenine and BH4 Pathways: Relevance to the Pathophysiology and Treatment of Inflammation-Driven Depressive Symptoms. Frontiers in Neuroscience, 2018, 12, 499.	1.4	63
21	Role of Adiposity-Driven Inflammation in Depressive Morbidity. Neuropsychopharmacology, 2017, 42, 115-128.	2.8	124
22	Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain, Behavior, and Immunity, 2017, 64, 33-49.	2.0	85
23	Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Research Reviews, 2017, 40, 95-119.	5.0	337
24	Low-grade inflammation is a major contributor of impaired attentional set shifting in obese subjects. Brain, Behavior, and Immunity, 2016, 58, 63-68.	2.0	39
25	Inflammatory, endocrine and metabolic correlates of fatigue in obese children. Psychoneuroendocrinology, 2016, 74, 158-163.	1.3	15
26	Role of Inflammation in the Development of Neuropsychiatric Symptom Domains: Evidence and Mechanisms. Current Topics in Behavioral Neurosciences, 2016, 31, 31-44.	0.8	48
27	Juvenile Obesity Enhances Emotional Memory and Amygdala Plasticity through Glucocorticoids. Journal of Neuroscience, 2015, 35, 4092-4103.	1.7	80
28	Neuropsychiatric Comorbidity in Obesity: Role of Inflammatory Processes. Frontiers in Endocrinology, 2014, 5, 74.	1.5	124
29	Adipose Inflammation in Obesity: Relationship With Circulating Levels of Inflammatory Markers and Association With Surgery-Induced Weight Loss. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E53-E61.	1.8	69
30	Chronic Low-Grade Inflammation in Metabolic Disorders: Relevance for Behavioral Symptoms. NeuroImmunoModulation, 2014, 21, 95-101.	0.9	96
31	Dopaminergic Mechanisms of Reduced Basal Ganglia Responses to Hedonic Reward During Interferon Alfa Administration. Archives of General Psychiatry, 2012, 69, 1044.	13.8	306
32	Chronic Low-Grade Inflammation in Elderly Persons Is Associated with Altered Tryptophan and Tyrosine Metabolism: Role in Neuropsychiatric Symptoms. Biological Psychiatry, 2011, 70, 175-182.	0.7	312
33	Immune system to brain signaling: Neuropsychopharmacological implications. , 2011, 130, 226-238.		893
34	Basal Ganglia Hypermetabolism and Symptoms of Fatigue during Interferon-α Therapy. Neuropsychopharmacology, 2007, 32, 2384-2392.	2.8	203
35	Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends in Immunology, 2006, 27, 24-31.	2.9	2,502
36	Cognitive Dysfunction Relates to Subjective Report of Mental Fatigue in Patients with Chronic Fatigue Syndrome. Neuropsychopharmacology, 2006, 31, 1777-1784.	2.8	71

LUCILE CAPURON

4

#	Article	IF	CITATIONS
37	The Authors??? Reply. CNS Drugs, 2005, 19, 721-722.	2.7	2
38	Anterior Cingulate Activation and Error Processing During Interferon-Alpha Treatment. Biological Psychiatry, 2005, 58, 190-196.	0.7	204
39	Cytokines and psychopathology: Lessons from interferon-α. Biological Psychiatry, 2004, 56, 819-824.	0.7	508
40	Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain, Behavior, and Immunity, 2004, 18, 205-213.	2.0	217
41	Interferon-alpha–induced changes in tryptophan metabolism. Biological Psychiatry, 2003, 54, 906-914.	0.7	449
42	Cytokines and depression: The need for a new paradigm. Brain, Behavior, and Immunity, 2003, 17, 119-124.	2.0	241
43	Association of Exaggerated HPA Axis Response to the Initial Injection of Interferon-Alpha With Development of Depression During Interferon-Alpha Therapy. American Journal of Psychiatry, 2003, 160, 1342-1345.	4.0	285
44	Treatment of cytokine-induced depression. Brain, Behavior, and Immunity, 2002, 16, 575-580.	2.0	120
45	Neurobehavioral Effects of Interferon-α in Cancer Patients Phenomenology and Paroxetine Responsiveness of Symptom Dimensions. Neuropsychopharmacology, 2002, 26, 643-652.	2.8	680

46 Inflammation, sickness behaviour and depression. , 0, , 265-279.