Boyang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3382263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional biomaterials. APL Bioengineering, 2022, 6, 010401.	3.3	4
2	Subtractive manufacturing with swelling induced stochastic folding of sacrificial materials for fabricating complex perfusable tissues in multi-well plates. Lab on A Chip, 2022, 22, 1929-1942.	3.1	9
3	Se(XY) matters: the importance of incorporating sex in microphysiological models. Trends in Biotechnology, 2022, 40, 1284-1298.	4.9	2
4	From Model System to Therapy: Scalable Production of Perfusable Vascularized Liver Spheroids in "Open-Top" 384-Well Plate. ACS Biomaterials Science and Engineering, 2021, 7, 2964-2972.	2.6	15
5	Organ-on-a-Chip Systems for Modeling Pathological Tissue Morphogenesis Associated with Fibrosis and Cancer. ACS Biomaterials Science and Engineering, 2021, 7, 2900-2925.	2.6	15
6	Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 1000-1021.	2.6	11
7	A well plate–based multiplexed platform for incorporation of organoids into an organ-on-a-chip system with a perfusable vasculature. Nature Protocols, 2021, 16, 2158-2189.	5.5	51
8	A Robust Protocol for Decellularized Human Lung Bioink Generation Amenable to 2D and 3D Lung Cell Culture. Cells, 2021, 10, 1538.	1.8	22
9	Seeding A Growing Organ. Trends in Biotechnology, 2021, 39, 753-754.	4.9	3
10	Organ-level vascularization: The Mars mission of bioengineering. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 2003-2007.	0.4	15
11	Microfluidics: IFlowPlate—A Customized 384â€Well Plate for the Culture of Perfusable Vascularized Colon Organoids (Adv. Mater. 46/2020). Advanced Materials, 2020, 32, 2070345.	11.1	2
12	Deep-LUMEN assay – human lung epithelial spheroid classification from brightfield images using deep learning. Lab on A Chip, 2020, 20, 4623-4631.	3.1	14
13	h-FIBER: Microfluidic Topographical Hollow Fiber for Studies of Glomerular Filtration Barrier. ACS Central Science, 2020, 6, 903-912.	5.3	59
14	zâ€Wire: A Microscaffold That Supports Guided Tissue Assembly and Intramyocardium Delivery for Cardiac Repair. Advanced Healthcare Materials, 2020, 9, 2000358.	3.9	4
15	IFlowPlate—A Customized 384â€Well Plate for the Culture of Perfusable Vascularized Colon Organoids. Advanced Materials, 2020, 32, e2002974.	11.1	66
16	A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell, 2019, 176, 913-927.e18.	13.5	398
17	New Frontiers for Biofabrication and Bioreactor Design in Microphysiological System Development. Trends in Biotechnology, 2019, 37, 1327-1343.	4.9	30
18	Rapid Wire Casting: A Multimaterial Microphysiological Platform Enabled by Rapid Casting of Elastic Microwires (Adv. Healthcare Mater. 5/2019). Advanced Healthcare Materials, 2019, 8, 1970019	3.9	1

BOYANG ZHANG

#	Article	IF	CITATIONS
19	A Multimaterial Microphysiological Platform Enabled by Rapid Casting of Elastic Microwires. Advanced Healthcare Materials, 2019, 8, e1801187.	3.9	26
20	Modeling organ-specific vasculature with organ-on-a-chip devices. Nanotechnology, 2019, 30, 024002.	1.3	35
21	Organâ€Onâ€Aâ€Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Advanced Healthcare Materials, 2018, 7, 1700506.	3.9	227
22	Curvature facilitates podocyte culture in a biomimetic platform. Lab on A Chip, 2018, 18, 3112-3128.	3.1	22
23	Advances in organ-on-a-chip engineering. Nature Reviews Materials, 2018, 3, 257-278.	23.3	690
24	Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature. Nature Protocols, 2018, 13, 1793-1813.	5.5	58
25	Organ-on-a-chip devices advance to market. Lab on A Chip, 2017, 17, 2395-2420.	3.1	307
26	InVADE: Integrated Vasculature for Assessing Dynamic Events. Advanced Functional Materials, 2017, 27, 1703524.	7.8	62
27	Synergistic Engineering: Organoids Meet Organs-on-a-Chip. Cell Stem Cell, 2017, 21, 297-300.	5.2	200
28	Organsâ€onâ€a hip: InVADE: Integrated Vasculature for Assessing Dynamic Events (Adv. Funct. Mater.) Tj ET	Qq0 0 0 rg 7.8	gBT ₁ /Overlock
29	Highly Elastic and Moldable Polyester Biomaterial for Cardiac Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2016, 2, 780-788.	2.6	79
30	Resolving Myocardial Activation With Novel Omnipolar Electrograms. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e004107.	2.1	54
31	Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials, 2016, 15, 669-678.	13.3	471
32	Platform technology for scalable assembly of instantaneously functional mosaic tissues. Science Advances, 2015, 1, e1500423.	4.7	42
33	Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab on A Chip, 2014, 14, 869-882.	3.1	121
34	Inhibition of apoptosis in human induced pluripotent stem cells during expansion in a defined culture using angiopoietin-1 derived peptide QHREDGS. Biomaterials, 2014, 35, 7786-7799.	5.7	31
35	Cardiac Tissue Vascularization. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 382-393.	1.0	34
36	Biowire: a platform for maturation of human pluripotent stem cell–derived cardiomyocytes. Nature Methods, 2013, 10, 781-787.	9.0	784

BOYANG ZHANG

#	Article	IF	CITATIONS
37	A standalone perfusion platform for drug testing and target validation in micro-vessel networks. Biomicrofluidics, 2013, 7, 44125.	1.2	31
38	Label-Free Enrichment of Functional Cardiomyocytes Using Microfluidic Deterministic Lateral Flow Displacement. PLoS ONE, 2012, 7, e37619.	1.1	39
39	Mosaic Hydrogels: One‧tep Formation of Multiscale Soft Materials. Advanced Materials, 2012, 24, 3650-3658.	11.1	113
40	Hydrogels: Mosaic Hydrogels: Oneâ€Step Formation of Multiscale Soft Materials (Adv. Mater. 27/2012). Advanced Materials, 2012, 24, 3582-3582.	11.1	1
41	Micro- and nanotechnology in cardiovascular tissue engineering. Nanotechnology, 2011, 22, 494003.	1.3	55