Ann Leenaers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3382243/publications.pdf

Version: 2024-02-01

361045 377514 1,261 48 20 34 h-index citations g-index papers 48 48 48 512 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Post-irradiation examination of uranium–7wt% molybdenum atomized dispersion fuel. Journal of Nuclear Materials, 2004, 335, 39-47.	1.3	163
2	Transmission electron microscopy investigation of irradiated U–7wt%Mo dispersion fuel. Journal of Nuclear Materials, 2008, 375, 340-346.	1.3	155
3	Irradiation behavior of ground $U(Mo)$ fuel with and without Si added to the matrix. Journal of Nuclear Materials, 2011, 412, 41-52.	1.3	56
4	From High to Low Enriched Uranium Fuel in Research Reactors. Advances in Science and Technology, 0, , .	0.2	55
5	Microstructure of U3Si2 fuel plates submitted to a high heat flux. Journal of Nuclear Materials, 2004, 327, 121-129.	1.3	45
6	Swelling of U(Mo)–Al(Si) dispersion fuel under irradiation – Non-destructive analyses of the LEONIDAS E-FUTURE plates. Journal of Nuclear Materials, 2012, 430, 246-258.	1.3	44
7	Surface engineering of low enriched uranium–molybdenum. Journal of Nuclear Materials, 2013, 440, 220-228.	1.3	44
8	Microstructural evolution of U(Mo)–Al(Si) dispersion fuel under irradiation – Destructive analyses of the LEONIDAS E-FUTURE plates. Journal of Nuclear Materials, 2013, 441, 439-448.	1.3	44
9	High burn-up structure of U(Mo) dispersion fuel. Journal of Nuclear Materials, 2016, 476, 218-230.	1.3	44
10	On the solubility of chromium sesquioxide in uranium dioxide fuel. Journal of Nuclear Materials, 2003, 317, 62-68.	1.3	43
11	Swelling of U(Mo) dispersion fuel under irradiation – Non-destructive analyses of the SELENIUM plates. Journal of Nuclear Materials, 2013, 442, 60-68.	1.3	42
12	Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2. Journal of Nuclear Materials, 2015, 458, 380-393.	1.3	41
13	Characterization of Uranium Particles Produced by Hydrolysis of UF6Using SEM and SIMS. Microscopy and Microanalysis, 2007, 13, 156-164.	0.2	40
14	Post-irradiation examination of AlFeNi cladded U3Si2 fuel plates irradiated under severe conditions. Journal of Nuclear Materials, 2008, 375, 243-251.	1.3	40
15	The effect of silicon on the interaction between metallic uranium and aluminum: A 50 year long diffusion experiment. Journal of Nuclear Materials, 2008, 381, 242-248.	1.3	39
16	Heavy ion irradiation of UMo/Al samples PVD coated with Si and ZrN layers. Journal of Nuclear Materials, 2013, 434, 296-302.	1.3	33
17	Determination of fluorine in uranium oxyfluoride particles as an indicator of particle age. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 199-207.	1.5	32
18	Microstructure of as atomized and annealed U-Mo7 particles: A SEM/EBSD study of grain growth. Journal of Nuclear Materials, 2017, 495, 249-266.	1.3	27

#	Article	IF	CITATIONS
19	Microstructural characterization of a thin film ZrN diffusion barrier in an As-fabricated U–7Mo/Al matrix dispersion fuel plate. Journal of Nuclear Materials, 2015, 458, 406-418.	1.3	25
20	Crystallographic study of Si and ZrN coated U–Mo atomised particles and of their interaction with al under thermal annealing. Journal of Nuclear Materials, 2013, 442, 124-132.	1.3	24
21	Pore pressure estimation in irradiated UMo. Journal of Nuclear Materials, 2018, 510, 472-483.	1.3	22
22	A modelling study of the inter-diffusion layer formation in U-Mo/Al dispersion fuel plates at high power. Journal of Nuclear Materials, 2018, 499, 191-203.	1.3	21
23	Microstructure of long-term annealed highly irradiated beryllium. Journal of Nuclear Materials, 2008, 372, 256-262.	1.3	17
24	Transmission electron microscopy investigation of neutron irradiated Si and ZrN coated UMo particles prepared using FIB. Journal of Nuclear Materials, 2018, 498, 60-70.	1.3	15
25	Oxidation of spent UO2 fuel stored in moist environment. Journal of Nuclear Materials, 2003, 317, 226-233.	1.3	13
26	A novel approach to determine the local burnup in irradiated fuels using Atom Probe Tomography (APT). Journal of Nuclear Materials, 2020, 528, 151853.	1.3	13
27	STEM-EDS/EELS and APT characterization of ZrN coatings on UMo fuel kernels. Journal of Nuclear Materials, 2018, 511, 174-182.	1.3	12
28	Determination of activation energies of the U(Mo)/Si and U(Mo)/Al solid state reaction using in-situ X-ray diffraction and Kissinger analysis. Solid State Sciences, 2012, 14, 1133-1140.	1.5	11
29	AlSi matrices for U(Mo) dispersion fuel plates. Journal of Nuclear Materials, 2013, 439, 7-18.	1.3	11
30	Irradiation behavior study of U–Mo/Al dispersion fuel with high energy Xe. Journal of Nuclear Materials, 2015, 464, 236-244.	1.3	11
31	Effect of fission rate on the microstructure of coated UMo dispersion fuel. Journal of Nuclear Materials, 2017, 494, 10-19.	1.3	11
32	TEM investigation of long-term annealed highly irradiated beryllium. Journal of Nuclear Materials, 2008, 374, 54-60.	1.3	8
33	Microstructural analysis of MTR fuel plates damaged by a coolant flow blockage. Journal of Nuclear Materials, 2009, 394, 87-94.	1.3	8
34	Characterization of fresh EMPIrE and SEMPER FIDELIS U(Mo)/Al fuel plates made with PVD-coated U(Mo) particles. EPJ Nuclear Sciences & Technologies, 2018, 4, 49.	0.3	8
35	Morphological characterization of the fresh ZrN coated UMo powders used in EMPIrE irradiation experiment: A practical approach. Journal of Nuclear Materials, 2020, 533, 152087.	1.3	7
36	3D reconstructions of irradiated U Mo fuel to understand breaching effects in ZrN diffusion barriers. Journal of Nuclear Materials, 2018, 510, 431-436.	1.3	6

#	Article	IF	CITATIONS
37	ZrN coating as diffusion barrier in U(Mo) dispersion fuel systems. Journal of Nuclear Materials, 2021, 552, 153000.	1.3	6
38	Microstructural Changes and Chemical Analysis of Fission Products in Irradiated Uranium-7 wt.% Molybdenum Metallic Fuel Using Atom Probe Tomography. Applied Sciences (Switzerland), 2021, 11, 6905.	1.3	5
39	Non-destructive analysis of swelling in the EMPIrE fuel test. Journal of Nuclear Materials, 2022, 564, 153683.	1.3	5
40	U(Mo) grain refinement induced by irradiation with high energy iodine. Journal of Nuclear Materials, 2021, 548, 152850.	1.3	4
41	U-Si Based Fuel System. , 2020, , 485-498.		4
42	U-Mo Based Fuel System. , 2020, , 499-530.		3
43	Status of the Low Enriched Uranium Fuel Development for High Performance Research Reactors. Advances in Science and Technology, 2014, 94, 43-54.	0.2	1
44	Temperature Effects on Interdiffusion of Al and U-Mo under Irradiation. Journal of Nuclear Materials, 2021, 544, 152684.	1.3	1
45	Microstructure of Spent MOX Fuel Stored Under Dry Air for 25 Years. , 2001, , .		1
46	Morphological and microstructural characterizations of the fresh fuel plates for the SEMPERÂFIDELIS in-pile test. Journal of Nuclear Materials, 2022, 563, 153656.	1.3	1
47	Microstructure and calorimetric analysis of the U Mn binary system. Journal of Nuclear Materials, 2019, 514, 380-392.	1.3	0
48	U-Al Based Fuel System. , 2020, , 464-484.		0