Mikael J Pittet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3382219/publications.pdf

Version: 2024-02-01

30551 49824 28,883 95 56 citations h-index papers

91 g-index 100 100 100 45048 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Macrophage-Targeted Therapy Unlocks Antitumoral Cross-talk between IFNÎ ³ -Secreting Lymphocytes and IL12-Producing Dendritic Cells. Cancer Immunology Research, 2022, 10, 40-55.	1.6	18
2	Abstract P061: Dendritic cell paucity in mismatch repair-proficient colorectal cancer liver metastases limits the efficacy of immune checkpoint blockade., 2022,,.		0
3	Abstract P056: Rapid serial immunoprofiling of the tumor immune microenvironment by fine needle sampling. , 2022, , .		0
4	Clinical relevance of tumour-associated macrophages. Nature Reviews Clinical Oncology, 2022, 19, 402-421.	12.5	250
5	Neutrophil phenotypes and functions in cancer: A consensus statement. Journal of Experimental Medicine, 2022, 219, .	4.2	119
6	Spatiotemporal multiplexed immunofluorescence imaging of living cells and tissues with bioorthogonal cycling of fluorescent probes. Nature Biotechnology, 2022, 40, 1654-1662.	9.4	42
7	TNIK Inhibition Has Dual Synergistic Effects on Tumor and Associated Immune Cells. Advanced Biology, 2022, 6, .	1.4	3
8	Rapid Serial Immunoprofiling of the Tumor Immune Microenvironment by Fine Needle Sampling. Clinical Cancer Research, 2021, 27, 4781-4793.	3.2	14
9	Resident Kupffer cells and neutrophils drive liver toxicity in cancer immunotherapy. Science Immunology, 2021, 6, .	5.6	47
10	CXCR6 positions cytotoxic TÂcells to receive critical survival signals in the tumor microenvironment. Cell, 2021, 184, 4512-4530.e22.	13.5	180
11	Myeloid Cells Are Enriched in Tonsillar Crypts, Providing Insight into the Viral Tropism of Human Papillomavirus. American Journal of Pathology, 2021, 191, 1774-1786.	1.9	7
12	Tumor-infiltrating dendritic cell states are conserved across solid human cancers. Journal of Experimental Medicine, 2021, 218, .	4.2	113
13	Dendritic cell paucity in mismatch repair–proficient colorectal cancer liver metastases limits immune checkpoint blockade efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
14	Versatile neutrophil functions in cancer. Seminars in Immunology, 2021, 57, 101538.	2.7	16
15	Myeloid Cell-Targeted Nanocarriers Efficiently Inhibit Cellular Inhibitor of Apoptosis for Cancer Immunotherapy. Cell Chemical Biology, 2020, 27, 94-104.e5.	2.5	16
16	Tumor-Promoting Ly-6G+ SiglecFhigh Cells Are Mature and Long-Lived Neutrophils. Cell Reports, 2020, 32, 108164.	2.9	65
17	The chemical biology of IL-12 production <i>via</i> the non-canonical NFkB pathway. RSC Chemical Biology, 2020, 1, 166-176.	2.0	11
18	New technology on the horizon: Fast analytical screening technique FNA (FASTâ€FNA) enables rapid, multiplex biomarker analysis in head and neck cancers. Cancer Cytopathology, 2020, 128, 782-791.	1.4	6

#	Article	IF	Citations
19	Phase II Trial of IL-12 Plasmid Transfection and PD-1 Blockade in Immunologically Quiescent Melanoma. Clinical Cancer Research, 2020, 26, 2827-2837.	3.2	86
20	Durable and controlled depletion of neutrophils in mice. Nature Communications, 2020, 11, 2762.	5.8	138
21	COVID-19 diagnostics in context. Science Translational Medicine, 2020, 12, .	5.8	305
22	The expanding landscape of inflammatory cells affecting cancer therapy. Nature Biomedical Engineering, 2020, 4, 489-498.	11.6	39
23	Single Extracellular Vesicle Protein Analysis Using Immunoâ€Droplet Digital Polymerase Chain Reaction Amplification. Advanced Biology, 2020, 4, e1900307.	3.0	52
24	A durable murine model of spleen transplantation with arterial and venous anastomoses. Scientific Reports, 2020, 10, 3979.	1.6	1
25	Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity, 2019, 50, 1317-1334.e10.	6.6	897
26	Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nature Communications, 2019, 10, 1486.	5.8	189
27	Glucocorticoids Regulate Bone Marrow B Lymphopoiesis After Stroke. Circulation Research, 2019, 124, 1372-1385.	2.0	50
28	Development of Adamantane-Conjugated TLR7/8 Agonists for Supramolecular Delivery and Cancer Immunotherapy. Theranostics, 2019, 9, 8426-8436.	4.6	65
29	LTX-315 sequentially promotes lymphocyte-independent and lymphocyte-dependent antitumor effects. Cell Stress, 2019, 3, 348-360.	1.4	19
30	Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 2018, 24, 541-550.	15.2	3,421
31	Near infrared imaging of Mer tyrosine kinase (<i>MERTK</i>) using MERi-SiR reveals tumor associated macrophage uptake in metastatic disease. Chemical Communications, 2018, 54, 42-45.	2.2	21
32	Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics, 2018, 8, 5842-5854.	4.6	203
33	Quantitative Imaging of Tumor-Associated Macrophages and Their Response to Therapy Using ⁶⁴ Cu-Labeled Macrin. ACS Nano, 2018, 12, 12015-12029.	7.3	117
34	Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN- \hat{I}^3 and IL-12. Immunity, 2018, 49, 1148-1161.e7.	6.6	639
35	Recording the wild lives of immune cells. Science Immunology, 2018, 3, .	5.6	59
36	TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nature Biomedical Engineering, 2018, 2, 578-588.	11.6	714

#	Article	IF	CITATIONS
37	Age-related tumor growth in mice is related to integrin $\hat{l}\pm4$ in CD8+ T cells. JCI Insight, 2018, 3, .	2.3	31
38	Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nature Communications, 2017, 8, 14293.	5.8	155
39	Tumor Microenvironment: No Effector T Cells without Dendritic Cells. Cancer Cell, 2017, 31, 614-615.	7.7	38
40	In vivo imaging reveals a tumor-associated macrophage–mediated resistance pathway in anti–PD-1 therapy. Science Translational Medicine, 2017, 9, .	5.8	466
41	Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Science Translational Medicine, 2017, 9, .	5.8	178
42	Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF $<\!$ sup $>\!$ high $<\!$ /sup $>\!$ neutrophils. Science, 2017, 358, .	6.0	270
43	Neutrophils Suppress Intraluminal NK Cell–Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discovery, 2016, 6, 630-649.	7.7	369
44	PF4 Promotes Platelet Production and Lung Cancer Growth. Cell Reports, 2016, 17, 1764-1772.	2.9	80
45	Gal3 Links Inflammation and Insulin Resistance. Cell Metabolism, 2016, 24, 655-656.	7.2	16
46	The role of myeloid cells in cancer therapies. Nature Reviews Cancer, 2016, 16, 447-462.	12.8	570
47	SCS macrophages suppress melanoma by restricting tumor-derived vesicle–B cell interactions. Science, 2016, 352, 242-246.	6.0	259
48	Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity, 2016, 44, 343-354.	6.6	767
49	Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF- \hat{l}° B inflammatory pathway. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1871-1876.	3.3	62
50	Common TLR5 Mutations Control Cancer Progression. Cancer Cell, 2015, 27, 1-3.	7.7	25
51	ER Stress in Dendritic Cells Promotes Cancer. Cell, 2015, 161, 1492-1493.	13.5	14
52	Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nature Communications, 2015, 6, 8692.	5.8	353
53	Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Science Translational Medicine, 2015, 7, 314ra183.	5.8	273
54	The journey from stem cell to macrophage. Annals of the New York Academy of Sciences, 2014, 1319, 1-18.	1.8	64

#	Article	IF	CITATIONS
55	Imaging macrophages with nanoparticles. Nature Materials, 2014, 13, 125-138.	13.3	698
56	Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine, 2014, 20, 1301-1309.	15.2	823
57	The Spleen in Local and Systemic Regulation of Immunity. Immunity, 2013, 39, 806-818.	6.6	707
58	The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 2013, 342, 971-976.	6.0	1,580
59	Molecular Pathways: Tumor-Derived Microvesicles and Their Interactions with Immune Cells <i>In Vivo</i> . Clinical Cancer Research, 2013, 19, 2598-2604.	3.2	54
60	Angiotensin II Drives the Production of Tumor-Promoting Macrophages. Immunity, 2013, 38, 296-308.	6.6	157
61	Remote control of macrophage production by cancer. Oncolmmunology, 2013, 2, e24183.	2.1	8
62	Longitudinal confocal microscopy imaging of solid tumor destruction following adoptive T cell transfer. Oncolmmunology, 2013, 2, e26677.	2.1	47
63	Origins of tumor-associated macrophages and neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2491-2496.	3.3	547
64	Extramedullary Hematopoiesis Generates Ly-6C ^{high} Monocytes That Infiltrate Atherosclerotic Lesions. Circulation, 2012, 125, 364-374.	1.6	398
65	Regulation of Macrophage and Dendritic Cell Responses by Their Lineage Precursors. Journal of Innate Immunity, 2012, 4, 411-423.	1.8	15
66	⁸⁹ Zr-Labeled Dextran Nanoparticles Allow in Vivo Macrophage Imaging. Bioconjugate Chemistry, 2011, 22, 2383-2389.	1.8	116
67	Intravital Imaging. Cell, 2011, 147, 983-991.	13.5	439
68	Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 2011, 29, 1005-1010.	9.4	697
69	Monocytes link atherosclerosis and cancer. European Journal of Immunology, 2011, 41, 2519-2522.	1.6	31
70	Heterogeneous In Vivo Behavior of Monocyte Subsets in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1424-1432.	1.1	121
71	Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites. Science, 2009, 325, 612-616.	6.0	1,806
72	Behavior of Endogenous Tumor-Associated Macrophages Assessed In Vivo Using a Functionalized Nanoparticle. Neoplasia, 2009, 11, 459-IN4.	2.3	103

#	Article	IF	CITATIONS
73	Behavior of immune players in the tumor microenvironment. Current Opinion in Oncology, 2009, 21, 53-59.	1.1	71
74	Imaging in the era of molecular oncology. Nature, 2008, 452, 580-589.	13.7	2,190
75	Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunological Reviews, 2008, 221, 107-129.	2.8	47
76	Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. Journal of Clinical Investigation, 2007, 117, 195-205.	3.9	1,064
77	<i>In vivo</i> imaging of T cell delivery to tumors after adoptive transfer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12457-12461.	3.3	113
78	The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Experimental Medicine, 2007, 204, 3037-3047.	4.2	1,926
79	A Near-Infrared Cell Tracker Reagent for Multiscopic In Vivo Imaging and Quantification of Leukocyte Immune Responses. PLoS ONE, 2007, 2, e1075.	1.1	59
80	Regulatory T Cells Reversibly Suppress Cytotoxic T Cell Function Independent of Effector Differentiation. Immunity, 2006, 25, 129-141.	6.6	456
81	Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nature Protocols, 2006, $1,73-79$.	5.5	148
82	Ex Vivo Characterization of Allo-MHC-Restricted T Cells Specific for a Single MHC-Peptide Complex. Journal of Immunology, 2006, 176, 2330-2336.	0.4	22
83	Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10340-10345.	3.3	316
84	Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-Â signals in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 419-424.	3.3	711
85	Effector Function of Human Tumor-Specific CD8 T Cells in Melanoma Lesions: A State of Local Functional Tolerance. Cancer Research, 2004, 64, 2865-2873.	0.4	351
86	$\hat{l}\pm 3$ Domain Mutants of Peptide/MHC Class I Multimers Allow the Selective Isolation of High Avidity Tumor-Reactive CD8 T Cells. Journal of Immunology, 2003, 171, 1844-1849.	0.4	65
87	Melan-A/MART-1-specific CD8 T cells: from thymus to tumor. Trends in Immunology, 2002, 23, 325-328.	2.9	53
88	Antigenicity and immunogenicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma. Immunological Reviews, 2002, 188, 81-96.	2.8	146
89	Human CD8+ T cells expressing HLA-DR and CD28 show telomerase activity and are distinct from cytolytic effector T cells. European Journal of Immunology, 2001, 31, 459-466.	1.6	48
90	In Vivo Expression of Natural Killer Cell Inhibitory Receptors by Human Melanoma–Specific Cytolytic T Lymphocytes. Journal of Experimental Medicine, 1999, 190, 775-782.	4.2	179

MIKAEL J PITTET

#	Article	IF	CITATIONS
91	CD28-negative cytolytic effector T cells frequently express NK receptors and are present at variable proportions in circulating lymphocytes from healthy donors and melanoma patients. European Journal of Immunology, 1999, 29, 1990-1999.	1.6	111
92	CD28-negative cytolytic effector T cells frequently express NK receptors and are present at variable proportions in circulating lymphocytes from healthy donors and melanoma patients., 1999, 29, 1990.		1
93	CD28-negative cytolytic effector T cells frequently express NK receptors and are present at variable proportions in circulating lymphocytes from healthy donors and melanoma patients., 1999, 29, 1990.		7
94	Ex Vivo Staining of Metastatic Lymph Nodes by Class I Major Histocompatibility Complex Tetramers Reveals High Numbers of Antigen-experienced Tumor-specific Cytolytic T Lymphocytes. Journal of Experimental Medicine, 1998, 188, 1641-1650.	4.2	475
95	In Situ Transfection of Interleukin 12 Plasmid Enhances Anti-PD-1 Immune Response in Patients with Immunologically Quiescent Melanoma. SSRN Electronic Journal, 0, , .	0.4	0