Hongtao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3382101/publications.pdf

Version: 2024-02-01

759233 996975 15 646 12 15 citations h-index g-index papers 15 15 15 864 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	THE CONTRIBUTION OF ELECTRICAL CONDUCTIVITY, DIELECTRIC PERMITTIVITY AND DOMAIN SWITCHING IN FERROELECTRIC HYSTERESIS LOOPS. Journal of Advanced Dielectrics, 2011, 01, 107-118.	2.4	295
2	Processing and microstructure characterisation of oxide dispersion strengthened Fe–14Cr–0.4Ti–0.25Y2O3 ferritic steels fabricated by spark plasma sintering. Journal of Nuclear Materials, 2015, 464, 61-68.	2.7	65
3	The effect of Nd substitution on the electrical properties of Bi3NbTiO9 Aurivillius phase ceramics. Journal of Applied Physics, 2009, 106, .	2.5	42
4	The grain size effect on the properties of Aurivillius phase Bi _{3.15} Nd _{0.85} Ti ₃ O ₁₂ ferroelectric ceramics. Nanotechnology, 2009, 20, 385708.	2.6	40
5	Effect of grain size on domain structures, dielectric and thermal depoling of Nd-substituted bismuth titanate ceramics. Applied Physics Letters, 2013, 103, .	3.3	36
6	Microstructure and electrical properties of Aurivillius phase (CaBi2Nb2O9)1â^'x(BaBi2Nb2O9)x solid solution. Journal of Applied Physics, 2010, 108, 014109.	2.5	31
7	Orientation dependence of dielectric and relaxor behaviour in Aurivillius phase BaBi2Nb2O9 ceramics prepared by spark plasma sintering. Journal of Materials Science: Materials in Electronics, 2006, 17, 657-661.	2.2	23
8	An in situ powder neutron diffraction study of nano-precipitate formation during processing of oxide-dispersion-strengthened ferritic steels. Journal of Alloys and Compounds, 2014, 582, 769-773.	5.5	22
9	Current understanding and applications of the cold sintering process. Frontiers of Chemical Science and Engineering, 2019, 13, 654-664.	4.4	21
10	High temperature lead-free relaxor ferroelectric: Intergrowth Aurivillius phase BaBi2Nb2O9–Bi4Ti3O12 ceramics. Journal of Applied Physics, 2010, 107, .	2.5	20
11	Crystal structure and electrical properties of textured Ba2Bi4Ti5O18 ceramics. Journal of the European Ceramic Society, 2019, 39, 1042-1049.	5.7	17
12	Microstructural comparison of effects of hafnium and titanium additions in spark-plasma-sintered Fe-based oxide-dispersion strengthened alloys. Journal of Nuclear Materials, 2017, 487, 433-442.	2.7	15
13	Microstructural and mechanical characterisation of Fe-14Cr-0.22Hf alloy fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2018, 762, 678-687.	5 . 5	10
14	Relaxor behavior and photocatalytic properties of BaBi 2 Nb 2 O 9. Journal of the American Ceramic Society, 2020, 103, 28-34.	3.8	6
15	Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 604-612.	2.2	3