Nathan F Dalleska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3381604/publications.pdf

Version: 2024-02-01

25 papers 902 citations

16 h-index 25 g-index

26 all docs

26 docs citations

times ranked

26

1634 citing authors

#	Article	IF	CITATIONS
1	Sulfate sulfur isotopes and major ion chemistry reveal that pyrite oxidation counteracts CO2 drawdown from silicate weathering in the Langtang-Trisuli-Narayani River system, Nepal Himalaya. Geochimica Et Cosmochimica Acta, 2021, 294, 43-69.	3.9	41
2	Organic sulfur fluxes and geomorphic control of sulfur isotope ratios in rivers. Earth and Planetary Science Letters, 2021, 562, 116838.	4.4	9
3	Sulfur isotope fractionations constrain the biological cycling of dimethylsulfoniopropionate in the upper ocean. Limnology and Oceanography, 2021, 66, 3607-3618.	3.1	3
4	Cathodic NH ₄ ⁺ leaching of nitrogen impurities in CoMo thin-film electrodes in aqueous acidic solutions. Sustainable Energy and Fuels, 2020, 4, 5080-5087.	4.9	14
5	Synthesis of Carboxylic Acid and Dimer Ester Surrogates to Constrain the Abundance and Distribution of Molecular Products in α-Pinene and β-Pinene Secondary Organic Aerosol. Environmental Science & Echnology, 2020, 54, 12829-12839.	10.0	31
6	Coupling Filter-Based Thermal Desorption Chemical Ionization Mass Spectrometry with Liquid Chromatography/Electrospray Ionization Mass Spectrometry for Molecular Analysis of Secondary Organic Aerosol. Environmental Science & Echnology, 2020, 54, 13238-13248.	10.0	7
7	Isotopically Selective Quantification by UPLC-MS of Aqueous Ammonia at Submicromolar Concentrations Using Dansyl Chloride Derivatization. ACS Energy Letters, 2020, 5, 1532-1536.	17.4	34
8	Stable Isotope Analysis of Intact Oxyanions Using Electrospray Quadrupole-Orbitrap Mass Spectrometry. Analytical Chemistry, 2020, 92, 3077-3085.	6.5	30
9	lodometry-Assisted Liquid Chromatography Electrospray Ionization Mass Spectrometry for Analysis of Organic Peroxides: An Application to Atmospheric Secondary Organic Aerosol. Environmental Science & Technology, 2018, 52, 2108-2117.	10.0	45
10	Towards measuring growth rates of pathogens during infections by D ₂ Oâ€labeling lipidomics. Rapid Communications in Mass Spectrometry, 2018, 32, 2129-2140.	1.5	13
11	Rapid Aqueous-Phase Hydrolysis of Ester Hydroperoxides Arising from Criegee Intermediates and Organic Acids. Journal of Physical Chemistry A, 2018, 122, 5190-5201.	2.5	62
12	Synergistic O $\langle sub \rangle 3 \langle sub \rangle + OH$ oxidation pathway to extremely low-volatility dimers revealed in \hat{l}^2 -pinene secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8301-8306.	7.1	45
13	Rapid quantification and isotopic analysis of dissolved sulfur species. Rapid Communications in Mass Spectrometry, 2017, 31, 791-803.	1.5	11
14	Starvation and recovery in the deepâ€sea methanotroph <scp><i>M</i></scp> <i>ethyloprofundus sedimentiMolecular Microbiology, 2017, 103, 242-252.</i>	2.5	40
15	A note on the effects of inorganic seed aerosol on the oxidation state of secondary organic aerosol— <i>α</i> Pinene ozonolysis. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,476.	3.3	14
16	Identification and differential production of ubiquinone-8 in the bacterial predator Bdellovibrio bacteriovorus. Research in Microbiology, 2016, 167, 413-423.	2.1	3
17	Formation and evolution of molecular products in \hat{l} ±-pinene secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14168-14173.	7.1	225
18	Secondary Organic Aerosol Composition from C ₁₂ Alkanes. Journal of Physical Chemistry A, 2015, 119, 4281-4297.	2.5	53

#	Article	IF	CITATION
19	The Selective Electrochemical Conversion of Preactivated CO ₂ to Methane. Journal of the Electrochemical Society, 2015, 162, H473-H476.	2.9	18
20	Fosmidomycin Decreases Membrane Hopanoids and Potentiates the Effects of Colistin on Burkholderia multivorans Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2014, 58, 5211-5219.	3.2	30
21	Branched Polymeric Media: Boron-Chelating Resins from Hyperbranched Polyethylenimine. Environmental Science & Environmental Sc	10.0	35
22	Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm. Photochemical and Photobiological Sciences, 2011, 10, 1945-1953.	2.9	76
23	Effect of changes in water level on sediment pore water redox geochemistry at a reservoir shoreline. Applied Geochemistry, 2010, 25, 1902-1911.	3.0	8
24	Partitioning of Poly(amidoamine) Dendrimers between n-Octanol and Water. Environmental Science & Envir	10.0	25
25	Experimental Evidence for Î ³ -Agostic Assistance in Î ² -Methyl Elimination, the Microscopic Reverse of α-Agostic Assistance in the Chain Propagation Step of Olefin Polymerization. Organometallics, 2005, 24, 2789-2794.	2.3	29