
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3381525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nature Materials, 2015, 14, 330-336.	13.3	1,129
2	High-efficiency organic light-emitting diodes with fluorescent emitters. Nature Communications, 2014, 5, 4016.	5.8	869
3	Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Organic Electronics, 2013, 14, 2721-2726.	1.4	455
4	Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nature Photonics, 2021, 15, 203-207.	15.6	449
5	Controlling Singlet–Triplet Energy Splitting for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie - International Edition, 2017, 56, 1571-1575.	7.2	380
6	Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nature Photonics, 2020, 14, 636-642.	15.6	331
7	Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. Scientific Reports, 2013, 3, 2127.	1.6	305
8	Twisted Intramolecular Charge Transfer State for Long-Wavelength Thermally Activated Delayed Fluorescence. Chemistry of Materials, 2013, 25, 3766-3771.	3.2	297
9	Excited state engineering for efficient reverse intersystem crossing. Science Advances, 2018, 4, eaao6910.	4.7	294
10	Controlling Singlet–Triplet Energy Splitting for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie, 2017, 129, 1593-1597.	1.6	287
11	Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nature Communications, 2020, 11, 1765.	5.8	287
12	Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. Nature Materials, 2019, 18, 1084-1090.	13.3	271
13	Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states. Science Advances, 2017, 3, e1603282.	4.7	263
14	Dual Intramolecular Charge-Transfer Fluorescence Derived from a Phenothiazine-Triphenyltriazine Derivative. Journal of Physical Chemistry C, 2014, 118, 15985-15994.	1.5	261
15	Highâ€Efficiency White Organic Lightâ€Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescent Emitter Combined with Green and Red Fluorescent Emitters. Advanced Materials, 2015, 27, 2019-2023.	11.1	236
16	Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Scientific Reports, 2015, 5, 8429.	1.6	227
17	Rational Molecular Design for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Advanced Functional Materials, 2018, 28, 1706023.	7.8	195
18	Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts. Nature Communications, 2017, 8, 2250.	5.8	159

#	Article	IF	CITATIONS
19	Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System. ACS Central Science, 2017, 3, 769-777.	5.3	148
20	Controlled emission colors and singlet–triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2015, 3, 2175-2181.	2.7	147
21	Effect of Molecular Morphology on Amplified Spontaneous Emission of Bis‣tyrylbenzene Derivatives. Advanced Materials, 2009, 21, 4034-4038.	11.1	138
22	Highly Efficient Nearâ€Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angewandte Chemie - International Edition, 2021, 60, 8477-8482.	7.2	130
23	Extremely Lowâ€Threshold Amplified Spontaneous Emission of 9,9′â€Spirobifluorene Derivatives and Electroluminescence from Fieldâ€Effect Transistor Structure. Advanced Functional Materials, 2007, 17, 2328-2335.	7.8	124
24	Benzimidazobenzothiazoleâ€Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2016, 55, 6864-6868.	7.2	123
25	High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence. Applied Physics Letters, 2014, 104, 233304.	1.5	116
26	Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4. Nature Communications, 2018, 9, 5036.	5.8	113
27	Donor–Îf–Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Angewandte Chemie - International Edition, 2017, 56, 16536-16540.	7.2	109
28	The Role of Reverse Intersystem Crossing Using a TADFâ€Type Acceptor Molecule on the Device Stability of Exciplexâ€Based Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1906614.	11.1	109
29	Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers. Science Advances, 2016, 2, e1501470.	4.7	104
30	Thermally-activated Delayed Fluorescence for Light-emitting Devices. Chemistry Letters, 2021, 50, 938-948.	0.7	103
31	Exploiting Singlet Fission in Organic Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1801484.	11.1	100
32	Effect of reverse intersystem crossing rate to suppress efficiency roll-off in organic light-emitting diodes with thermally activated delayed fluorescence emitters. Chemical Physics Letters, 2016, 644, 62-67.	1.2	96
33	Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density. Applied Physics Letters, 2005, 86, 213506.	1.5	92
34	Light Amplification in Molecules Exhibiting Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2017, 5, 1700051.	3.6	84
35	The Importance of Excited tate Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angewandte Chemie - International Edition, 2018, 57, 12380-12384.	7.2	83
36	Color Tuning of Avobenzone Boron Difluoride as an Emitter to Achieve Fullâ€Color Emission. Advanced Functional Materials, 2016, 26, 6703-6710.	7.8	81

#	Article	IF	CITATIONS
37	Highly balanced ambipolar mobilities with intense electroluminescence in field-effect transistors based on organic single crystal oligo(p-phenylenevinylene) derivatives. Applied Physics Letters, 2009, 95, 033308.	1.5	78
38	Emission Color Tuning in Ambipolar Organic Singleâ€Crystal Fieldâ€Effect Transistors by Dyeâ€Doping. Advanced Functional Materials, 2010, 20, 1610-1615.	7.8	77
39	Tetrabenzo[<i>a</i> , <i>c</i>]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angewandte Chemie - International Edition, 2021, 60, 19364-19373.	7.2	67
40	Light-emitting organic field-effect transistors based on highly luminescent single crystals of thiophene/phenylene co-oligomers. Journal of Materials Chemistry C, 2014, 2, 4918.	2.7	65
41	Near-infrared organic light-emitting diodes for biosensing with high operating stability. Applied Physics Express, 2017, 10, 074101.	1.1	64
42	Tuning of threshold voltage by interfacial carrier doping in organic single crystal ambipolar light-emitting transistors and their bright electroluminescence. Applied Physics Letters, 2009, 95, .	1.5	61
43	Blue-Light-Emitting Ambipolar Field-Effect Transistors Using an Organic Single Crystal of 1,4-Bis(4-methylstyryl)benzene. Applied Physics Express, 0, 1, 091801.	1.1	60
44	Investigating HOMO Energy Levels of Terminal Emitters for Realizing Highâ€Brightness and Stable TADFâ€Assisted Fluorescence Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2021, 7, 2001090.	2.6	55
45	Injection and Transport of High Current Density over 1000 A/cm2in Organic Light Emitting Diodes under Pulse Excitation. Japanese Journal of Applied Physics, 2005, 44, 3659-3662.	0.8	52
46	Organic light-emitting diodes containing multilayers of organic single crystals. Applied Physics Letters, 2010, 96, .	1.5	51
47	Nearâ€Infrared Electrophosphorescence up to 1.1 µm using a Thermally Activated Delayed Fluorescence Molecule as Triplet Sensitizer. Advanced Materials, 2017, 29, 1604265.	11.1	51
48	Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Applied Physics Letters, 2015, 106, .	1.5	50
49	Formation of Organic Crystalline Nanopillar Arrays and Their Application to Organic Photovoltaic Cells. ACS Applied Materials & Interfaces, 2011, 3, 80-83.	4.0	49
50	Light Amplification in an Organic Solidâ€State Film with the Aid of Tripletâ€ŧoâ€Singlet Upconversion. Advanced Optical Materials, 2015, 3, 1381-1388.	3.6	47
51	Suppression of Structural Change upon S ₁ –T ₁ Conversion Assists the Thermally Activated Delayed Fluorescence Process in Carbazole-Benzonitrile Derivatives. Journal of Physical Chemistry Letters, 2019, 10, 2475-2480.	2.1	45
52	Trifluoromethane modification of thermally activated delayed fluorescence molecules for high-efficiency blue organic light-emitting diodes. Chemical Communications, 2018, 54, 8261-8264.	2.2	44
53	Ambipolar field-effect transistor based on organic-inorganic hybrid structure. Applied Physics Letters, 2007, 90, 262104.	1.5	42
54	Boron Difluoride Complexes of Expanded N onfused Calix[<i>n</i>]phyrins That Demonstrate Unique Luminescent and Lasing Properties. Angewandte Chemie - International Edition, 2016, 55, 12045-12049.	7.2	42

#	Article	IF	CITATIONS
55	Effect of Carrier Balance on Device Degradation of Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitters. Advanced Electronic Materials, 2019, 5, 1800708.	2.6	42
56	Spectrally narrow emission from organic films under continuous-wave excitation. Applied Physics Letters, 2007, 90, 231109.	1.5	41
57	Low threshold amplified spontaneous emission and ambipolar charge transport in non-volatile liquid fluorene derivatives. Chemical Communications, 2016, 52, 3103-3106.	2.2	39
58	Slow recombination of spontaneously dissociated organic fluorophore excitons. Nature Communications, 2019, 10, 5748.	5.8	38
59	Observation of Nonradiative Deactivation Behavior from Singlet and Triplet States of Thermally Activated Delayed Fluorescence Emitters in Solution. Journal of Physical Chemistry Letters, 2020, 11, 562-566.	2.1	36
60	Thermally Activated Delayed Fluorescence Properties of Trioxoazatriangulene Derivatives Modified with Electron Donating Groups. Advanced Optical Materials, 2021, 9, 2002174.	3.6	35
61	Capacitance-voltage characteristics of a 4,4′-bis[(<i>N</i> -carbazole)styryl]biphenyl based organic light-emitting diode: Implications for characteristic times and their distribution. Applied Physics Letters, 2013, 103, .	1.5	34
62	Molecular orientation of disk-shaped small molecules exhibiting thermally activated delayed fluorescence in host–guest films. Applied Physics Letters, 2020, 116, .	1.5	32
63	Photoluminescence Quenching Probes Spin Conversion and Exciton Dynamics in Thermally Activated Delayed Fluorescence Materials. Advanced Materials, 2019, 31, e1804490.	11.1	31
64	Amplified Spontaneous Emission and Electroluminescence from Thiophene/Phenylene Coâ€Oligomerâ€Doped <i>p</i> â€bis(<i>p</i> â€Styrylstyryl)Benzene Crystals. Advanced Optical Materials, 2013 1, 422-427.	3, 3.6	28
65	Understanding degradation of organic light-emitting diodes from magnetic field effects. Communications Materials, 2020, 1, .	2.9	28
66	Benzimidazobenzothiazoleâ€Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2016, 128, 6978-6982.	1.6	27
67	Solvent-dependent investigation of carbazole benzonitrile derivatives: does the LE3â^'CT1 energy gap facilitate thermally activated delayed fluorescence?. Journal of Photonics for Energy, 2018, 8, 1.	0.8	27
68	Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films. Nature Materials, 2022, 21, 819-825.	13.3	27
69	Highly Efficient Deepâ€Blue Organic Lightâ€Emitting Diodes Based on Rational Molecular Design and Device Engineering. Advanced Functional Materials, 2022, 32, .	7.8	27
70	Multi-color light-emitting transistors composed of organic single crystals. Organic Electronics, 2013, 14, 2737-2742.	1.4	25
71	Effect of Joule heating on transient current and electroluminescence in p-i-n organic light-emitting diodes under pulsed voltage operation. Organic Electronics, 2016, 31, 287-294.	1.4	25
72	Donor–Ïf–Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Angewandte Chemie, 2017, 129, 16763-16767.	1.6	25

#	Article	IF	CITATIONS
73	The Importance of Excitedâ€State Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angewandte Chemie, 2018, 130, 12560-12564.	1.6	25
74	Highly Efficient Thermally Activated Delayed Fluorescence with Slow Reverse Intersystem Crossing. Chemistry Letters, 2019, 48, 126-129.	0.7	25
75	Well-Ordered 4CzIPN ((4s,6s)-2,4,5,6-Tetra(9-H-carbazol-9-yl)isophthalonitrile) Layers: Molecular Orientation, Electronic Structure, and Angular Distribution of Photoluminescence. Journal of Physical Chemistry Letters, 2018, 9, 863-867.	2.1	23
76	Highly Efficient Nearâ€Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angewandte Chemie, 2021, 133, 8558-8563.	1.6	23
77	Isotope Effect of Host Material on Device Stability of Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Small Science, 2021, 1, 2000057.	5.8	22
78	Tailorâ€Made Multiâ€Resonance Terminal Emitters toward Narrowband, Highâ€Efficiency, and Stable Hyperfluorescence Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	21
79	Quantification of temperature rise in unipolar organic conductors during short voltage-pulse excitation using electrical testing methods. Organic Electronics, 2016, 31, 191-197.	1.4	20
80	Near-infrared absorbing pyrrolopyrrole aza-BODIPY-based donor–acceptor polymers with reasonable photoresponse. Journal of Materials Chemistry C, 2020, 8, 8770-8776.	2.7	19
81	Utilization of Multi-Heterodonors in Thermally Activated Delayed Fluorescence Molecules and Their High Performance Bluish-Green Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 9498-9506.	4.0	18
82	Role of Spontaneous Orientational Polarization in Organic Donor–Acceptor Blends for Exciton Binding. Advanced Optical Materials, 2020, 8, 2000896.	3.6	18
83	Molecular Design Based on Donor-Weak Donor Scaffold for Blue Thermally-Activated Delayed Fluorescence Designed by Combinatorial DFT Calculations. Frontiers in Chemistry, 2020, 8, 403.	1.8	18
84	Spectrally Narrow Emission at Cutoff Wavelength from Edge of Electrically Pumped Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2007, 46, L826-L829.	0.8	17
85	Photostable and highly emissive glassy organic dots exhibiting thermally activated delayed fluorescence. Chemical Communications, 2019, 55, 5215-5218.	2.2	17
86	Highly conductive interface between a rubrene single crystal and a molybdenum oxide layer and its application in transistors. Solid State Communications, 2011, 151, 93-96.	0.9	15
87	Analysis of alternating current driven electroluminescence in organic light emitting diodes: A comparative study. Organic Electronics, 2014, 15, 1815-1821.	1.4	15
88	Introduction of oxygen into organic thin films with the aim of suppressing singlet–triplet annihilation. Chemical Physics Letters, 2015, 624, 43-46.	1.2	14
89	TADF activation by solvent freezing: The role of nonradiative triplet decay and spin-orbit coupling in carbazole benzonitrile derivatives. Synthetic Metals, 2019, 252, 62-68.	2.1	14
90	Molecular Design for Blue Thermal Activated Delayed Fluorescence Materials: Substitution Position Effect. Chemistry Letters, 2017, 46, 1490-1492.	0.7	13

#	Article	IF	CITATIONS
91	Efficiency of Thermally Activated Delayed Fluorescence Sensitized Triplet Upconversion Doubled in Threeâ€Component System. Advanced Materials, 2022, 34, e2103976.	11.1	13
92	Significant role of spin-triplet state for exciton dissociation in organic solids. Science Advances, 2022, 8, eabj9188.	4.7	13
93	Application of wide-energy-gap material 3,4-di(9H-carbazol-9-yl) benzonitrile in organic light-emitting diodes. Thin Solid Films, 2016, 619, 120-124.	0.8	12
94	Low lasing threshold in organic distributed feedback solid state lasers using bisstyrylbenzene derivative as active material. , 2005, , .		11
95	Very low amplified spontaneous emission threshold and electroluminescence characteristics of 1,1′-diphenyl substituted fluorene derivatives. Optical Materials, 2007, 30, 630-636.	1.7	11
96	Photophysical characteristics of 4,4′-bis(N-carbazolyl)tolan derivatives and their application in organic light emitting diodes. Journal of Luminescence, 2011, 131, 1520-1524.	1.5	11
97	58-2: Revealing the Excited-state Dynamics of Thermally Activated Delayed Flourescence Molecules by using Transient Absorption Spectrospy. Digest of Technical Papers SID International Symposium, 2016, 47, 786-789.	0.1	11
98	2,6â€Dicarbonitrile Diphenylâ€1λ ⁵ â€Phosphinine (DCNP)—A Robust Conjugated Building Block fo Multiâ€Functional Dyes Exhibiting Tunable Amplified Spontaneous Emission. Advanced Optical Materials, 2021, 9, 2101122.	r 3.6	11
99	Optical and Electrical Properties of Bis(4-(phenylethynyl)phenyl)ethynes and Their Application to Organic Field-Effect Transistors. Japanese Journal of Applied Physics, 2006, 45, L1331-L1333.	0.8	10
100	High-Efficiency Sky-Blue Organic Light-Emitting Diodes Utilizing Thermally-Activated Delayed Fluorescence. IEICE Transactions on Electronics, 2015, E98.C, 971-976.	0.3	8
101	Thermally Activated Delayed Fluorescence from Pentacarbazorylbenzonitrile. Chemistry Letters, 2016, 45, 770-772.	0.7	8
102	Precise Exciton Management of Quaternary Emission Layers for Highly Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2020, 12, 50668-50674.	4.0	8
103	Carbazole-2-carbonitrile as an acceptor in deep-blue thermally activated delayed fluorescence emitters for narrowing charge-transfer emissions. Chemical Science, 2022, 13, 7821-7828.	3.7	8
104	Direct Observation of Photoexcited Electron Dynamics in Organic Solids Exhibiting Thermally Activated Delayed Fluorescence via Timeâ€Resolved Photoelectron Emission Microscopy. Advanced Optical Materials, 2021, 9, 2100619.	3.6	7
105	Amplified spontaneous emission from oligo(<i>p</i> -phenylenevinylene) derivatives. Materials Advances, 2021, 2, 3906-3914.	2.6	7
106	Thermally activated delayed fluorescence of Bis(9,9-dimethyl-9,10-dihydroacridine) dibenzo[b,d]thiophene 5,5-dioxide derivatives for organic light-emitting diodes. Journal of Luminescence, 2017, 190, 485-491.	1.5	6
107	Magnesium-gold binary alloy for organic light-emitting diodes with high corrosion resistance. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 040607.	0.6	4
108	High-triplet-energy Bipolar Host Materials Based on Phosphine Oxide Derivatives for Efficient Sky-blue Thermally Activated Delayed Fluorescence Organic Light-emitting Diodes with Reduced Roll-off. Chemistry Letters, 2019, 48, 1225-1228.	0.7	4

#	Article	IF	CITATIONS
109	Tetrabenzo[<i>a</i> , <i>c</i>]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angewandte Chemie, 2021, 133, 19513-19522.	1.6	4
110	H ₂ O-Induced Crystallization of Organic Luminescent Thin Films by Direct Film Storage in a High Vacuum. Journal of Physical Chemistry C, 2020, 124, 24919-24929.	1.5	3
111	Well-ordered films of disk-shaped thermally activated delayed fluorescence molecules. Journal of Photonics for Energy, 2018, 8, 1.	0.8	3
112	Low-Threshold Blue Emission from First-Order Organic DFB Laser Using 2,7-bis[4-(N-carbazole)phenylvinyl]-9,9′-Spirobifluorene as Active Gain Medium. Molecular Crystals and Liquid Crystals, 2009, 504, 1-8.	0.4	2
113	Amplified Spontaneous Emission: Amplified Spontaneous Emission and Electroluminescence from Thiophene/Phenylene Coâ€Oligomerâ€Doped <i>p</i> â€bis(<i>p</i> â€Styrylstyryl)Benzene Crystals (Advanced)	ſj 3E ð∕Qq1 í	1
114	Role of intermediate state in the excited state dynamics of highly efficient TADF molecules. Proceedings of SPIE, 2016, , .	0.8	2
115	High-efficiency organic light-emitting diodes with blue fluorescent emitter. , 2014, , .		1
116	High efficiency organic light-emitting diodes with conventional fluorescent emitters. , 2014, , .		1
117	19â€1: <i>Invited Paper:</i> Stable Pureâ€Blue Hyperfluorescence OLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 224-227.	0.1	1
118	Organic light emitting devices from OLED to organic laser diode. , 2007, , .		0
119	Frontier of organic light emitting devices. , 2007, , .		0
120	High Performance Organic Light-emitting Diodes Based on Thermally-activated Delayed Fluorescence Materials. Journal of the Vacuum Society of Japan, 2015, 58, 73-78.	0.3	0
121	Tunable OLEDs: Color Tuning of Avobenzone Boron Difluoride as an Emitter to Achieve Fullâ€Color Emission (Adv. Funct. Mater. 37/2016). Advanced Functional Materials, 2016, 26, 6847-6847.	7.8	0
122	Organic light-emitting devices with E-type delayed fluorescence emitters. , 2018, , .		0
123	Organic Lightâ€Emitting Diode: Effect of Carrier Balance on Device Degradation of Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitters (Adv. Electron.) Tj ETQq1 1 (). 7& 4314	rgBT /Over
124	Partial Modification of Electron-withdrawing Groups in Thermally-activated Delayed Fluorescence Materials Aimed to Improve Efficiency and Stability. Chemistry Letters, 2020, 49, 1189-1193.	0.7	0
125	Advances in Thermally Activated Delayed Fluorescent Materials and the Cutting Edge of High Performance OLEDs. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 269-276.	0.0	0
126	Material and device structure design aiming for realization of organic semiconductor laser. The Review of Laser Engineering, 2007, 35, 27-28.	0.0	0

0

#	Article	IF	CITATIONS
127	Organic Light-Emitting Transistors for Next-Generation Photonic Devices. Journal of the Japan Society of Colour Material, 2014, 87, 436-441.	0.0	Ο

128 Highly efficient pixelated near-infrared OLED light source. , 2022, , .