
Jonathan A Myers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3381447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2351-2363.	1.8	1,161
2	Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients. Science, 2011, 333, 1755-1758.	6.0	617
3	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
4	Betaâ€diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 2013, 16, 151-157.	3.0	370
5	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	2.7	330
6	Seed arrival, ecological filters, and plant species richness: a metaâ€analysis. Ecology Letters, 2009, 12, 1250-1260.	3.0	298
7	Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. Journal of Ecology, 2007, 95, 383-395.	1.9	290
8	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	1.9	281
9	Seed dispersal by white-tailed deer: implications for long-distance dispersal, invasion, and migration of plants in eastern North America. Oecologia, 2004, 139, 35-44.	0.9	253
10	Plant diversity increases with the strength of negative density dependence at the global scale. Science, 2017, 356, 1389-1392.	6.0	222
11	DISPERSAL OF TRILLIUM SEEDS BY DEER: IMPLICATIONS FOR LONG-DISTANCE MIGRATION OF FOREST HERBS. Ecology, 2003, 84, 1067-1072.	1.5	206
12	Inferring local ecological processes amid species pool influences. Trends in Ecology and Evolution, 2012, 27, 600-607.	4.2	188
13	Disturbance alters betaâ€diversity but not the relative importance of community assembly mechanisms. Journal of Ecology, 2015, 103, 1291-1299.	1.9	124
14	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
15	Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Global Ecology and Biogeography, 2013, 22, 202-212.	2.7	121
16	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	4.2	113
17	Seed arrival and ecological filters interact to assemble high-diversity plant communities. Ecology, 2011, 92, 676-686.	1.5	110
18	Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 2019, 22, 245-255.	3.0	92

JONATHAN A MYERS

#	Article	IF	CITATIONS
19	Negative density dependence is stronger in resourceâ€rich environments and diversifies communities when stronger for common but not rare species. Ecology Letters, 2016, 19, 657-667.	3.0	86
20	Dispersal and neutral sampling mediate contingent effects of disturbance on plant betaâ€diversity: a metaâ€analysis. Ecology Letters, 2017, 20, 347-356.	3.0	72
21	Elevational Gradients in β-Diversity Reflect Variation in the Strength of Local Community Assembly Mechanisms across Spatial Scales. PLoS ONE, 2015, 10, e0121458.	1.1	68
22	Wildfire disturbance and productivity as drivers of plant species diversity across spatial scales. Ecosphere, 2015, 6, 1-14.	1.0	66
23	Local immigration, competition from dominant guilds, and the ecological assembly of highâ€diversity pine savannas. Ecology, 2009, 90, 2745-2754.	1.5	65
24	Ontogenetic trait variation influences tree community assembly across environmental gradients. Ecosphere, 2014, 5, 1-20.	1.0	64
25	Integrating species traits into species pools. Ecology, 2018, 99, 1265-1276.	1.5	55
26	When does intraspecific trait variation contribute to functional betaâ€diversity?. Journal of Ecology, 2016, 104, 487-496.	1.9	52
27	Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Global Ecology and Biogeography, 2018, 27, 581-592.	2.7	48
28	Continent-wide tree fecundity driven by indirect climate effects. Nature Communications, 2021, 12, 1242.	5.8	46
29	Treeâ€mycorrhizal associations detected remotely from canopy spectral properties. Global Change Biology, 2016, 22, 2596-2607.	4.2	45
30	The betaâ€diversity of species interactions: Untangling the drivers of geographic variation in plant–pollinator diversity and function across scales. American Journal of Botany, 2016, 103, 118-128.	0.8	43
31	Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
32	Fuels and fires influence vegetation via above―and belowground pathways in a highâ€diversity plant community. Journal of Ecology, 2015, 103, 1009-1019.	1.9	35
33	Wildfires Influence Abundance, Diversity, and Intraspecific and Interspecific Trait Variation of Native Bees and Flowering Plants Across Burned and Unburned Landscapes. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	35
34	Accurate forest projections require longâ€ŧerm wood decay experiments because plant trait effects change through time. Global Change Biology, 2020, 26, 864-875.	4.2	34
35	Patterns of nitrogenâ€fixing tree abundance in forests across Asia and America. Journal of Ecology, 2019, 107, 2598-2610.	1.9	29
36	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	5.8	28

JONATHAN A MYERS

#	Article	IF	CITATIONS
37	The promise and pitfalls of βâ€diversity in ecology and conservation. Journal of Vegetation Science, 2016, 27, 1081-1083.	1.1	27
38	North American tree migration paced by climate in the West, lagging in the East. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	27
39	Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 2021, 12, 2138.	5.8	26
40	Negative density dependence mediates biodiversity–productivity relationships across scales. Nature Ecology and Evolution, 2017, 1, 1107-1115.	3.4	25
41	Untangling the importance of niche breadth and niche position as drivers of tree species abundance and occupancy across biogeographic regions. Global Ecology and Biogeography, 2020, 29, 1542-1553.	2.7	22
42	Species Diversity Associated with Foundation Species in Temperate and Tropical Forests. Forests, 2019, 10, 128.	0.9	21
43	Local species diversity, β-diversity and climate influence the regional stability of bird biomass across North America. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192520.	1.2	21
44	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	5.8	21
45	Small-Scale Variation in Fuel Loads Differentially Affects Two Co-Dominant Bunchgrasses in a Species-Rich Pine Savanna. PLoS ONE, 2012, 7, e29674.	1.1	18
46	Conspecific negative density dependence and why its study should not be abandoned. Ecosphere, 2021, 12, e03322.	1.0	16
47	Using codispersion analysis to quantify and understand spatial patterns in species–environment relationships. New Phytologist, 2016, 211, 735-749.	3.5	15
48	Groundcover community assembly in highâ€diversity pine savannas: seed arrival and fireâ€generated environmental filtering. Ecosphere, 2017, 8, e01716.	1.0	15
49	Beta diversity as a driver of forest biomass across spatial scales. Ecology, 2022, 103, .	1.5	15
50	Chemical Similarity of Co-occurring Trees Decreases With Precipitation and Temperature in North American Forests. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	13
51	<i>allodb</i> : An R package for biomass estimation at globally distributed extratropical forest plots. Methods in Ecology and Evolution, 2022, 13, 330-338.	2.2	11
52	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	3.0	11
53	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scaleâ€. Science, 2018, 360, .	6.0	9
54	Wildfire severity alters drivers of interaction betaâ€diversity in plant–bee networks. Ecography, 2022, 2022, .	2.1	9

JONATHAN A MYERS

#	Article	IF	CITATIONS
55	Landscape Physiognomy Influences Abundance of the Lone Star Tick, Amblyomma americanum (Ixodida:) Tj ETQq	1,0.7843	8184 rgBT /0
56	Biotic and abiotic drivers of plant–pollinator community assembly across wildfire gradients. Journal of Ecology, 2021, 109, 1000-1013.	1.9	8
57	Direct estimates of downslope deadwood movement over 30 years in a temperature forest illustrate impacts of treefall on forest ecosystem dynamics. Canadian Journal of Forest Research, 2016, 46, 351-361.	0.8	7
58	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scaleâ€: Science, 2018, 360, .	6.0	6
59	Mechanisms of community assembly explaining betaâ€diversity patterns across biogeographic regions. Journal of Vegetation Science, 2021, 32, e13032.	1.1	5
60	The evolutionary assembly of forest communities along environmental gradients: recent diversification or sorting of preâ€adapted clades?. New Phytologist, 2021, 232, 2506-2519.	3.5	4
61	Snail herbivory affects seedling establishment in a temperate forest in the Ozarks. Journal of Ecology, 2019, 107, 1828-1838.	1.9	2
62	Landscape context mediates the relationship between plant functional traits and decomposition. Plant and Soil, 2019, 438, 377-391.	1.8	1
63	Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. PLoS ONE, 2020, 15, e0234537.	1.1	0
64	Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. , 2020, 15, e0234537.		0
65	Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. , 2020, 15, e0234537.		0
66	Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. , 2020, 15, e0234537.		0
67	Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. , 2020, 15, e0234537.		Ο
68	Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. , 2020, 15, e0234537.		0
69	Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. , 2020, 15, e0234537.		Ο