Salman Nazir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3381330/publications.pdf

Version: 2024-02-01

471509 501196 46 846 17 28 citations h-index g-index papers 47 47 47 598 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A STAMP-based causal analysis of the Korean Sewol ferry accident. Safety Science, 2016, 83, 93-101.	4.9	84
2	The human element in future Maritime Operations – perceived impact of autonomous shipping. Ergonomics, 2020, 63, 334-345.	2.1	55
3	A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plant. Korean Journal of Chemical Engineering, 2009, 26, 14-20.	2.7	54
4	Operator training simulators in virtual reality environment for process operators: a review. Virtual Reality, 2019, 23, 293-311.	6.1	53
5	Rethinking Maritime Education, Training, and Operations in the Digital Era: Applications for Emerging Immersive Technologies. Journal of Marine Science and Engineering, 2019, 7, 428.	2.6	52
6	Impact of training methods on Distributed Situation Awareness of industrial operators. Safety Science, 2015, 73, 136-145.	4.9	49
7	Situation awareness information requirements for maritime navigation: A goal directed task analysis. Safety Science, 2019, 120, 745-752.	4.9	48
8	How a plant simulator can improve industrial safety. Process Safety Progress, 2015, 34, 237-243.	1.0	37
9	Advanced Applications in Process Control and Training Needs of Field and Control Room Operators. IIE Transactions on Occupational Ergonomics and Human Factors, 2014, 2, 121-136.	0.4	35
10	The role of situation awareness in accidents of large-scale technological systems. Chemical Engineering Research and Design, 2015, 97, 13-24.	5.6	35
11	Towards Effective Training for Process and Maritime Industries. Procedia Manufacturing, 2015, 3, 1519-1526.	1.9	27
12	Performance assessment in full-scale simulators – A case of maritime pilotage operations. Safety Science, 2020, 129, 104775.	4.9	27
13	Virtual Reality and Augmented-Virtual Reality as Tools to Train Industrial Operators. Computer Aided Chemical Engineering, 2012, 30, 1397-1401.	0.5	26
14	Agent Transparency, Situation Awareness, Mental Workload, and Operator Performance: A Systematic Literature Review. Human Factors, 2024, 66, 180-208.	3.5	25
15	Critical incidents during dynamic positioning: operators' situation awareness and decision-making in maritime operations. Theoretical Issues in Ergonomics Science, 2015, 16, 366-387.	1.8	22
16	The continuum of simulator-based maritime training and education. WMU Journal of Maritime Affairs, 2021, 20, 135-150.	2.7	21
17	Automation in Process Industry: Cure or Curse? How can Training Improve Operator's Performance. Computer Aided Chemical Engineering, 2014, 33, 889-894.	0.5	20
18	Simulator training for maritime complex tasks: an experimental study. WMU Journal of Maritime Affairs, 2018, 17, 17-30.	2.7	20

#	Article	IF	CITATIONS
19	Testing and analyzing different training methods for industrial operators: an experimental approach. Computer Aided Chemical Engineering, 2013, , 667-672.	0.5	18
20	Stability and Performance of Physically Immobilized Ionic Liquids for Mercury Adsorption from a Gas Stream. Industrial & Engineering Chemistry Research, 2015, 54, 12114-12123.	3.7	16
21	Impact of Simulation Fidelity on Student Self-efficacy and Perceived Skill Development in Maritime Training. TransNav, 2019, 13, 663-669.	0.6	16
22	Performance Indicators for the Assessment of Industrial Operators. Computer Aided Chemical Engineering, 2012, 30, 1422-1426.	0.5	14
23	Consistency in the development of performance assessment methods in the maritime domain. WMU Journal of Maritime Affairs, 2018, 17, 71-90.	2.7	10
24	A New Soft Sensor Based on Recursive Partial Least Squares for Online Melt Index Predictions in Grade-Changing HDPE Operations. Chemical Product and Process Modeling, 2009, 4, .	0.9	8
25	Assessing Navigational Teamwork Through the Situational Correctness and Relevance of Communication. Procedia Manufacturing, 2015, 3, 2589-2596.	1.9	8
26	Maritime simulator training across Europe: a comparative study. WMU Journal of Maritime Affairs, 2019, 18, 197-224.	2.7	8
27	Computer Supported Collaborative Learning as an Intervention for Maritime Education and Training. Advances in Intelligent Systems and Computing, 2019, , 3-12.	0.6	7
28	Distributed Situation Awareness in pilotage operations: Implications and Challenges. TransNav, 2017, 11, 103-107.	0.6	7
29	Virtual and Augmented Reality as Viable Tools to Train Industrial Operators. Computer Aided Chemical Engineering, 2012, 31, 825-829.	0.5	6
30	Incidental Memory Recall in Virtual Reality: An Empirical Investigation. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 2277-2281.	0.3	5
31	A Plant Simulator to Enhance the Process Safety of Industrial Operators. , 2013, , .		4
32	Assessing the Technology Self-Efficacy of Maritime Instructors: An Explorative Study. Education Sciences, 2021, 11, 342.	2.6	4
33	Design of Experiment Comparing Users of Virtual Reality Head-Mounted Displays and Desktop Computers. Advances in Intelligent Systems and Computing, 2019, , 240-249.	0.6	4
34	The Level of Automation in Emergency Quick Disconnect Decision Making. Journal of Marine Science and Engineering, 2018, 6, 17.	2.6	3
35	Human error and response to alarms in process safety. DYNA (Colombia), 2016, 83, 81.	0.4	3
36	Exploring the Current Practices and Future Needs of Marine Engineering Education in Bangladesh. Journal of Marine Science and Engineering, 2021, 9, 1085.	2.6	3

#	Article	lF	CITATIONS
37	Accuracy of Time Duration Estimations in Virtual Reality. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 2079-2083.	0.3	3
38	Operator Training for Non-Technical Skills in Process Industry. Computer Aided Chemical Engineering, 2020, , 1993-1998.	0.5	2
39	How to Train for Everyday Work - A Comparative Study of Non-technical Skill Training. Lecture Notes in Networks and Systems, 2021, , 534-542.	0.7	2
40	Perspectives on Autonomy – Exploring Future Applications and Implications for Safety Critical Domains. Advances in Intelligent Systems and Computing, 2019, , 396-405.	0.6	2
41	Towards Holistic Decision Support Systems. Computer Aided Chemical Engineering, 2012, 31, 295-299.	0.5	1
42	Implications of Automation and Digitalization for Maritime Education and Training. Strategies for Sustainability, 2021, , 223-233.	0.3	1
43	From Virtual Reality to Neutral Buoyancy—Methodologies for Analyzing Walking Pattern on Moon and Mars. Advances in Intelligent Systems and Computing, 2016, , 387-397.	0.6	1
44	Space vs. Chemical Domains: Virtual and Real Simulation to Increase Safety in Extreme Contexts. Procedia Manufacturing, 2015, 3, 1817-1824.	1.9	0
45	Advance Use of Training Simulator in Maritime Education and Training: A Questionnaire Study. Advances in Intelligent Systems and Computing, 2018, , 361-371.	0.6	0
46	Learning from accidents: Nontechnical skills deficiency in the European process industry. Process Safety Progress, 0, , .	1.0	0