John-Lewis Zinia Zaukuu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3381243/publications.pdf

Version: 2024-02-01

794594 687363 33 398 13 19 g-index citations h-index papers 33 33 33 268 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongueâ€"Critical Overview. Sensors, 2020, 20, 5479.	3.8	47
2	Emerging trends of advanced sensor based instruments for meat, poultry and fish quality– a review. Critical Reviews in Food Science and Nutrition, 2020, 60, 3443-3460.	10.3	36
3	Authentication of Tokaj Wine (Hungaricum) with the Electronic Tongue and Near Infrared Spectroscopy. Journal of Food Science, 2019, 84, 3437-3444.	3.1	32
4	Factors Influencing the Long-Term Stability of Electronic Tongue and Application of Improved Drift Correction Methods. Biosensors, 2020, 10, 74.	4.7	26
5	Standard Analytical Methods, Sensory Evaluation, NIRS and Electronic Tongue for Sensing Taste Attributes of Different Melon Varieties. Sensors, 2019, 19, 5010.	3.8	20
6	Standardized Extraction Techniques for Meat Analysis with the Electronic Tongue: A Case Study of Poultry and Red Meat Adulteration. Sensors, 2021, 21, 481.	3.8	20
7	Detecting Low Concentrations of Nitrogen-Based Adulterants in Whey Protein Powder Using Benchtop and Handheld NIR Spectrometers and the Feasibility of Scanning through Plastic Bag. Molecules, 2020, 25, 2522.	3.8	19
8	Electronic Nose for Monitoring Odor Changes of Lactobacillus Species during Milk Fermentation and Rapid Selection of Probiotic Candidates. Foods, 2020, 9, 1539.	4.3	18
9	Classification of Bee Pollen and Prediction of Sensory and Colorimetric Attributes—A Sensometric Fusion Approach by e-Nose, e-Tongue and NIR. Sensors, 2020, 20, 6768.	3.8	17
10	Near-Infrared Spectroscopy and Aquaphotomics for Monitoring Mung Bean (Vigna radiata) Sprout Growth and Validation of Ascorbic Acid Content. Sensors, 2021, 21, 611.	3.8	17
11	Identification of Amaranthus Species Using Visible-Near-Infrared (Vis-NIR) Spectroscopy and Machine Learning Methods. Remote Sensing, 2021, 13, 4149.	4.0	16
12	Near infrared spectroscopy as a rapid method for detecting paprika powder adulteration with corn flour. Acta Periodica Technologica, 2019, , 346-352.	0.2	15
13	Detection and Quantification of Tomato Paste Adulteration Using Conventional and Rapid Analytical Methods. Sensors, 2020, 20, 6059.	3.8	14
14	An Overview of Near Infrared Spectroscopy and Its Applications in the Detection of Genetically Modified Organisms. International Journal of Molecular Sciences, 2021, 22, 9940.	4.1	14
15	Agricultural Potentials of Molecular Spectroscopy and Advances for Food Authentication: An Overview. Processes, 2022, 10, 214.	2.8	13
16	Processing methods and microbial assessment of <i>pito</i> (an African indigenous beer), at selected production sites in Ghana. Journal of the Institute of Brewing, 2016, 122, 736-744.	2.3	12
17	Discrimination of Transgenic Canola (Brassica napus L.) and their Hybrids with B. rapa using Vis-NIR Spectroscopy and Machine Learning Methods. International Journal of Molecular Sciences, 2022, 23, 220.	4.1	11
18	Electronic Tongue as a Correlative Technique for Modeling Cattle Meat Quality and Classification of Breeds. Foods, 2021, 10, 2283.	4.3	10

#	Article	IF	Citations
19	Vis-NIR Spectroscopy and Machine Learning Methods for the Discrimination of Transgenic Brassica napus L. and Their Hybrids with B. juncea. Processes, 2022, 10, 240.	2.8	10
20	Detection of Monilia Contamination in Plum and Plum Juice with NIR Spectroscopy and Electronic Tongue. Chemosensors, 2021, 9, 355.	3.6	9
21	Detecting the Bitterness of Milk-Protein-Derived Peptides Using an Electronic Tongue. Chemosensors, 2022, 10, 215.	3.6	7
22	Detection of heat treatment of honey with near infrared spectroscopy. Hungarian Agricultural Engineering, 2019, 36, 57-62.	0.3	4
23	NIRS and Aquaphotomics Trace Robusta-to-Arabica Ratio in Liquid Coffee Blends. Molecules, 2022, 27, 388.	3.8	3
24	Classical and correlative analytical methods for origin identification of Hungarian honeys. Acta Alimentaria, 2019, 48, 477-487.	0.7	2
25	Spectroscopy as a rapid detecting paprika powder adulteration. Hungarian Agricultural Engineering, 2019, 36, 38-43.	0.3	2
26	Food quality attributes of melon (Cucumis melo L.) influenced by grafting. Progress in Agricultural Engineering Sciences, 2020, 16, 53-66.	0.3	2
27	Prediction of main analytical and physical parameters of honey with electronic tongue. Hungarian Agricultural Engineering, 2017, , 38-43.	0.3	1
28	Honey-Based Polyphenols: Extraction, Quantification, Bioavailability, and Biological Activities. , 2020, , 35-63.		1
29	The Second Aquaphotomics European Conference. NIR News, 2020, 31, 12-18.	0.3	0
30	A Traditional Biscuit Fortified with Orange-Fleshed Sweet Potato Puree and Cowpea Flour. Food Science & Nutrition Technology, 2017, 2, .	0.0	0
31	Quantification of multiple adulterants in beef protein powder by FT-NIR. Hungarian Agricultural Engineering, 2019, 36, 44-50.	0.3	0
32	Monitoring Lactobacillus Bulgaricus Growth in Yoghurt by Electrical Impedance. IFMBE Proceedings, 2020, , 158-165.	0.3	0
33	Identification of Botanical and Geographical Origins of Honey-Based on Polyphenols. , 2020, , 125-161.		0