
Lijian Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3380980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Notch/IL-21 signaling axis primes bone marrow T cell progenitor expansion. JCI Insight, 2022, 7, .	2.3	2
2	The neurotransmitter receptor Gabbr1 regulates proliferation and function of hematopoietic stem and progenitor cells. Blood, 2021, 137, 775-787.	0.6	28
3	Regulation of the Autonomic Nervous System on Intestine. Frontiers in Physiology, 2021, 12, 700129.	1.3	20
4	Notch Ligand Jagged1 Is a Fetal Liver Niche Factor for the Function of Embryonic Hematopoietic Stem Cells. Blood, 2021, 138, 203-203.	0.6	1
5	Isoprenaline protects intestinal stem cells from chemotherapyâ€induced damage. British Journal of Pharmacology, 2020, 177, 687-700.	2.7	12
6	Senescent Cell Depletion Through Targeting BCL-Family Proteins and Mitochondria. Frontiers in Physiology, 2020, 11, 593630.	1.3	27
7	Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice. Stem Cells International, 2020, 2020, 1-12.	1.2	1
8	An Ex Vivo Bioengineered Human Liver Microenvironment to Support Hematopoietic Stem Cell Maintenance and Expansion. Blood, 2020, 136, 9-10.	0.6	0
9	Hematopoietic Jagged1 Is Required for the Transition of Hematopoietic Stem Cells from the Fetal Liver to the Adult Bone Marrow Niche. Blood, 2020, 136, 10-11.	0.6	2
10	Transient Inhibition of mTORC1 Signaling Ameliorates Irradiation-Induced Liver Damage. Frontiers in Physiology, 2019, 10, 228.	1.3	6
11	A Tie2-Notch1 signaling axis regulates regeneration of the endothelial bone marrow niche. Haematologica, 2019, 104, 2164-2177.	1.7	17
12	NOS2 deficiency has no influence on the radiosensitivity of the hematopoietic system. Cell and Bioscience, 2018, 8, 33.	2.1	2
13	M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion. Blood Advances, 2018, 2, 859-870.	2.5	45
14	The Wave2 scaffold Hem-1 is required for transition of fetal liver hematopoiesis to bone marrow. Nature Communications, 2018, 9, 2377.	5.8	15
15	<scp>DNA</scp> damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell, 2017, 16, 693-703.	3.0	146
16	28 Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis. Life Sciences in Space Research, 2017, 13, 39-44.	1.2	8
17	Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discovery, 2017, 7, 165-176.	7.7	881
18	Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice. International Journal of Radiation Biology, 2017, 93, 1312-1320.	1.0	9

Lijian Shao

#	Article	IF	CITATIONS
19	MAFB enhances oncogenic Notch signaling in T cell acute lymphoblastic leukemia. Science Signaling, 2017, 10, .	1.6	15
20	Inter-Strain Differences in LINE-1 DNA Methylation in the Mouse Hematopoietic System in Response to Exposure to Ionizing Radiation. International Journal of Molecular Sciences, 2017, 18, 1430.	1.8	28
21	Low doses of oxygen ion irradiation cause long-term damage to bone marrow hematopoietic progenitor and stem cells in mice. PLoS ONE, 2017, 12, e0189466.	1.1	11
22	Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice. PLoS ONE, 2016, 11, e0158097.	1.1	18
23	Synthesis of (2 R ,8′ S ,3′ E)-δ-tocodienol, a tocoflexol family member designed to have a superior pharmacokinetic profile compared to δ-tocotrienol. Tetrahedron, 2016, 72, 4001-4006.	1.0	9
24	Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 2016, 22, 78-83.	15.2	1,273
25	Whole-Body Proton Irradiation Causes Long-Term Damage to Hematopoietic Stem Cells in Mice. Radiation Research, 2015, 183, 240-248.	0.7	47
26	Total Body Irradiation in the "Hematopoietic―Dose Range Induces Substantial Intestinal Injury in Non-Human Primates. Radiation Research, 2015, 184, 545-553.	0.7	27
27	EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair. PLoS Genetics, 2015, 11, e1005675.	1.5	47
28	Thrombomodulin Contributes to Gamma Tocotrienol-Mediated Lethality Protection and Hematopoietic Cell Recovery in Irradiated Mice. PLoS ONE, 2015, 10, e0122511.	1.1	23
29	C/EBPδ Deficiency Sensitizes Mice to Ionizing Radiation-Induced Hematopoietic and Intestinal Injury. PLoS ONE, 2014, 9, e94967.	1.1	27
30	Long-term epigenetic effects of exposure to low doses of 56Fe in the mouse lung. Journal of Radiation Research, 2014, 55, 823-828.	0.8	34
31	Chronic mTOR activation promotes cell survival in Merkel cell carcinoma. Cancer Letters, 2014, 344, 272-281.	3.2	40
32	Hematopoietic Stem Cell Injury Induced by Ionizing Radiation. Antioxidants and Redox Signaling, 2014, 20, 1447-1462.	2.5	231
33	Reactive Oxygen Species in Normal and Tumor Stem Cells. Advances in Cancer Research, 2014, 122, 1-67.	1.9	291
34	Exposure to Low-Dose 56Fe-Ion Radiation Induces Long-Term Epigenetic Alterations in Mouse Bone Marrow Hematopoietic Progenitor and Stem Cells. Radiation Research, 2014, 182, 92.	0.7	58
35	Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a- and Arf-independent manner. Blood, 2014, 123, 3105-3115.	0.6	124
36	Opposite Effects of M1 and M2 Macrophages on Hematopoietic Stem Cell Self-Renewal and Ex Vivo Expansion. Blood, 2014, 124, 2909-2909.	0.6	0

Lijian Shao

#	Article	IF	CITATIONS
37	Timing of the Loss of Pten Is Critical in Determining the Disease Phenotype in Mice- a Mouse Model for Pediatric Mixed MDS/MPN. Blood, 2014, 124, 3585-3585.	0.6	0
38	Hematopoietic stem cell senescence and cancer therapy-induced long-term bone marrow injury. Translational Cancer Research, 2013, 2, 397-411.	0.4	69
39	Platelet Depletion Causes Rapid But Transient Activation Of Mouse Bone Marrow Long-Term Hematopoietic Stem Cells To Participate In Stress Thrombopoiesis. Blood, 2013, 122, 2436-2436.	0.6	0
40	A Sensitive and Quantitative Polymerase Chain Reaction-Based Cell Free In Vitro Non-Homologous End Joining Assay for Hematopoietic Stem Cells. PLoS ONE, 2012, 7, e33499.	1.1	18
41	Sensitization of tumor cells to cancer therapy by molecularly targeted inhibition of the inhibitor of nuclear factor l°B kinase. Translational Cancer Research, 2012, 1, 100-108.	0.4	16
42	Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression. Free Radical Biology and Medicine, 2011, 51, 30-37.	1.3	73
43	Reactive oxygen species and hematopoietic stem cell senescence. International Journal of Hematology, 2011, 94, 24-32.	0.7	157
44	lonizing Radiation Induces Hematopoietic Stem Cell Senescence and Long-Term Bone Marrow Suppression in a p16Ink4a/Arf-Independent manner. Blood, 2011, 118, 1345-1345.	0.6	0
45	A Sensitive and Quantitative Polymerase Chain Reaction-Based Non-Homologous End Joining in Vitro Assay for Hematopoietic Stem Cells. Blood, 2011, 118, 4825-4825.	0.6	0
46	Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation. Blood, 2010, 115, 4707-4714.	0.6	85
47	Gene-delivery systems for iPS cell generation. Expert Opinion on Biological Therapy, 2010, 10, 231-242.	1.4	43
48	Observation of microvasculature in intestinal wall after burn in rats. , 2007, 29, 166-72.		0