
Kelly G Ten Hagen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3380938/publications.pdf

Version: 2024-02-01

KELLY C TEN HACEN

#	Article	IF	CITATIONS
1	Community voices: NIH working toward inclusive excellence by promoting and supporting women in science. Nature Communications, 2022, 13, 1682.	12.8	6
2	In vivo models of mucin biosynthesis and function. Advanced Drug Delivery Reviews, 2022, 184, 114182.	13.7	17
3	Extracellular O-Glycans. , 2022, , .		0
4	Furin cleavage of the SARS-CoV-2 spike is modulated by <i>O</i> -glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	94
5	Loss of the disease-associated glycosyltransferase Galnt3 alters Muc10 glycosylation and the composition of the oral microbiome. Journal of Biological Chemistry, 2020, 295, 1411-1425.	3.4	9
6	Differential splicing of the lectin domain of an O-glycosyltransferase modulates both peptide and glycopeptide preferences. Journal of Biological Chemistry, 2020, 295, 12525-12536.	3.4	7
7	Loss of the disease-associated glycosyltransferase Galnt3 alters Muc10 glycosylation and the composition of the oral microbiome. Journal of Biological Chemistry, 2020, 295, 1411-1425.	3.4	12
8	Tango1 coordinates the formation of endoplasmic reticulum/Golgi docking sites to mediate secretory granule formation. Journal of Biological Chemistry, 2019, 294, 19498-19510.	3.4	43
9	Sweet rescue or surrender of the failing heart?. Journal of Biological Chemistry, 2019, 294, 12579-12580.	3.4	Ο
10	O-Linked glycosylation in Drosophila melanogaster. Current Opinion in Structural Biology, 2019, 56, 139-145.	5.7	20
11	Galnt11 regulates kidney function by glycosylating the endocytosis receptor megalin to modulate ligand binding. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25196-25202.	7.1	38
12	Pleiotropic effects of O-glycosylation in colon cancer. Journal of Biological Chemistry, 2018, 293, 1315-1316.	3.4	9
13	A molecular switch orchestrates enzyme specificity and secretory granule morphology. Nature Communications, 2018, 9, 3508.	12.8	38
14	Real-time insights into regulated exocytosis. Journal of Cell Science, 2017, 130, 1355-1363.	2.0	32
15	Loss of the mucosal barrier alters the progenitor cell niche via Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. Journal of Biological Chemistry, 2017, 292, 21231-21242.	3.4	22
16	Enzymatic insights into an inherited genetic disorder. ELife, 2017, 6, .	6.0	2
17	Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology, 2016, 26, 360-376.	2.5	73
18	Arp2/3-mediated F-actin formation controls regulated exocytosis in vivo. Nature Communications, 2015, 6, 10098.	12.8	76

Kelly G Ten Hagen

#	Article	IF	CITATIONS
19	Galnt1 Is Required for Normal Heart Valve Development and Cardiac Function. PLoS ONE, 2015, 10, e0115861.	2.5	34
20	O-Glycosylation regulates polarized secretion by modulating Tango1 stability. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7296-7301.	7.1	67
21	UDP-N-Acetyl-Alpha-D-Galactosamine: Polypeptide N-Acetylgalactosaminyltransferases (ppGalNAc-Ts). , 2014, , 495-511.		2
22	O-Glycosylation and Development. , 2014, , 1-8.		0
23	Fluorescent Lectin Staining of Drosophila Embryos and Tissues to Detect the Spatial Distribution of Glycans During Development. Methods in Molecular Biology, 2013, 1022, 99-105.	0.9	1
24	Mucin-type O-Glycosylation during Development. Journal of Biological Chemistry, 2013, 288, 6921-6929.	3.4	221
25	O-glycosylation modulates integrin and FGF signalling by influencing the secretion of basement membrane components. Nature Communications, 2012, 3, 869.	12.8	58
26	Glycosylation of α-Dystroglycan. Journal of Biological Chemistry, 2012, 287, 20967-20974.	3.4	18
27	Multiple Members of the UDP-GalNAc: Polypeptide N-Acetylgalactosaminyltransferase Family Are Essential for Viability in Drosophila. Journal of Biological Chemistry, 2012, 287, 5243-5252.	3.4	55
28	The cellular microenvironment and cell adhesion: a role for O-glycosylation. Biochemical Society Transactions, 2011, 39, 378-382.	3.4	27
29	An O-Glycosyltransferase Promotes Cell Adhesion during Development by Influencing Secretion of an Extracellular Matrix Integrin Ligand. Journal of Biological Chemistry, 2010, 285, 19491-19501.	3.4	49
30	Dissecting the Biological Role of Mucin-type O-Glycosylation Using RNA Interference in Drosophila Cell Culture. Journal of Biological Chemistry, 2010, 285, 34477-34484.	3.4	21
31	Developmental glycobiology. Seminars in Cell and Developmental Biology, 2010, 21, 599-599.	5.0	1
32	Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconjugate Journal, 2009, 26, 325-334.	2.7	173
33	Glycobiology on the fly: Developmental and mechanistic insights from Drosophila. Glycobiology, 2008, 19, 102-111.	2.5	64
34	A Mucin-type O-Glycosyltransferase Modulates Cell Adhesion during Drosophila Development. Journal of Biological Chemistry, 2008, 283, 34076-34086.	3.4	51
35	Conservation of peptide acceptor preferences between Drosophila and mammalian polypeptide-GalNAc transferase ortholog pairs. Glycobiology, 2008, 18, 861-870.	2.5	49
36	A UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase Is Required for Epithelial Tube Formation. Journal of Biological Chemistry, 2007, 282, 606-614.	3.4	66

Kelly G Ten Hagen

#	Article	IF	CITATIONS
37	O-linked glycan expression during Drosophila development. Glycobiology, 2007, 17, 820-827.	2.5	52
38	Expression of the UDP-GalNAc : polypeptide N-acetylgalactosaminyltransferase family is spatially and temporally regulated during Drosophila development. Glycobiology, 2006, 16, 83-95.	2.5	54
39	Characterization of mucin-type core-1 beta1-3 galactosyltransferase homologous enzymes in Drosophila melanogaster. FEBS Journal, 2005, 272, 4295-4305.	4.7	62
40	An Inhibitor of O-Glycosylation Induces Apoptosis in NIH3T3 Cells and Developing Mouse Embryonic Mandibular Tissues. Journal of Biological Chemistry, 2004, 279, 50382-50390.	3.4	18
41	Small Molecule Inhibitors of Mucin-Type O-Linked Glycosylation from a Uridine-Based Library. Chemistry and Biology, 2004, 11, 337-345.	6.0	59
42	Deconvoluting the Functions of Polypeptide N-α-Acetylgalactosaminyltransferase Family Members by Glycopeptide Substrate Profiling. Chemistry and Biology, 2004, 11, 1009-1016.	6.0	92
43	All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology, 2003, 13, 1R-16.	2.5	428
44	Functional Characterization and Expression Analysis of Members of the UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase Family from Drosophila melanogaster. Journal of Biological Chemistry, 2003, 278, 35039-35048.	3.4	75
45	Expression of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase isoforms in murine tissues determined by real-time PCR: a new view of a large family. Glycobiology, 2003, 13, 549-557.	2.5	58
46	A UDP-GalNAc:PolypeptideN-Acetylgalactosaminyltransferase Is Essential for Viability in Drosophila melanogaster. Journal of Biological Chemistry, 2002, 277, 22616-22622.	3.4	84
47	Cloning and Characterization of a Ninth Member of the UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase Family, ppGaNTase-T9. Journal of Biological Chemistry, 2001, 276, 17395-17404.	3.4	98
48	Characterization of a UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase That Displays Glycopeptide N-Acetylgalactosaminyltransferase Activity. Journal of Biological Chemistry, 1999, 274, 27867-27874.	3.4	103
49	Cloning and Expression of a Novel, Tissue Specifically Expressed Member of the UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase Family. Journal of Biological Chemistry, 1998, 273, 27749-27754.	3.4	118
50	cDNA Cloning and Expression of a Novel UDP-N-acetyl-d-galactosamine:PolypeptideN-Acetylgalactosaminyltransferase. Journal of Biological Chemistry, 1997, 272, 13843-13848.	3.4	113