Thierry Soldati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3380464/publications.pdf

Version: 2024-02-01

		36271	25770
126	12,796	51	108
papers	citations	h-index	g-index
174	174	174	19566
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf ₃ 50 7	02 Td (edition 1,430
3	Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biology, 2015, 6, 472-485.	3.9	736
4	Powering membrane traffic in endocytosis and recycling. Nature Reviews Molecular Cell Biology, 2006, 7, 897-908.	16.1	304
5	Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network Journal of Cell Biology, 1994, 125, 573-582.	2.3	286
6	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	2.1	244
7	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	3.9	242
8	Ca2+-Triggered Peptide Secretion in Single Cells Imaged with Green Fluorescent Protein and Evanescent-Wave Microscopy. Neuron, 1997, 18, 857-863.	3.8	227
9	Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO Journal, 2002, 21, 2149-2158.	3.5	225
10	Eat, kill or die: when amoeba meets bacteria. Current Opinion in Microbiology, 2008, 11, 271-276.	2.3	223
11	Rab GDP Dissociation Inhibitor: Putting Rab GTPases in the Right Place. Journal of Biological Chemistry, 1995, 270, 17057-17059.	1.6	216
12	Role of Actin Cortex in the Subplasmalemmal Transport of Secretory Granules in PC-12 Cells. Biophysical Journal, 2000, 78, 2863-2877.	0.2	213
13	Infection by Tubercular Mycobacteria Is Spread by Nonlytic Ejection from Their Amoeba Hosts. Science, 2009, 323, 1729-1733.	6.0	203
14	Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange. Nature, 1994, 369, 76-78.	13.7	198
15	Dissection of amoeboid movement into two mechanically distinct modes. Journal of Cell Science, 2006, 119, 3833-3844.	1.2	193
16	Rab GDI: a solubilizing and recycling factor for rab9 protein Molecular Biology of the Cell, 1993, 4, 425-434.	0.9	154
17	Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis. Journal of Cell Biology, 2011, 193, 831-839.	2.3	144
18	Molecular characterization of the evolution of phagosomes. Molecular Systems Biology, 2010, 6, 423.	3.2	139

#	Article	IF	CITATIONS
19	Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Frontiers in Immunology, 2017, 8, 1906.	2.2	138
20	Flotillin and RacH modulate the intracellular immunity of Dictyostelium to Mycobacterium marinum infection. Cellular Microbiology, 2007, 9, 2716-2733.	1.1	133
21	High-Resolution Dissection of Phagosome Maturation Reveals Distinct Membrane Trafficking Phases. Molecular Biology of the Cell, 2002, 13, 3508-3520.	0.9	123
22	Autophagy in Dictyostelium: Genes and pathways, cell death and infection. Autophagy, 2010, 6, 686-701.	4.3	104
23	A Dibasic Motif in the Tail of a Class XIV Apicomplexan Myosin Is an Essential Determinant of Plasma Membrane Localization. Molecular Biology of the Cell, 2000, 11, 1385-1400.	0.9	100
24	Dual Targeting of Antioxidant and Metabolic Enzymes to the Mitochondrion and the Apicoplast of Toxoplasma gondii. PLoS Pathogens, 2007, 3, e115.	2.1	98
25	Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)!. Traffic, 2012, 13, 1042-1052.	1.3	97
26	Ethane-Freezing/Methanol-Fixation of Cell Monolayers: A Procedure for Improved Preservation of Structure and Antigenicity for Light and Electron Microscopies. Journal of Structural Biology, 1998, 121, 326-342.	1.3	94
27	The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLoS Pathogens, 2018, 14, e1007501.	2.1	94
28	Dominant negative effect of cytoplasmic actin isoproteins on cardiomyocyte cytoarchitecture and function Journal of Cell Biology, 1995, 131, 1759-1773.	2.3	93
29	Proteomics Fingerprinting of Phagosome Maturation and Evidence for the Role of a Gα during Uptake. Molecular and Cellular Proteomics, 2006, 5, 2228-2243.	2.5	88
30	Social amoebae trap and kill bacteria by casting DNA nets. Nature Communications, 2016, 7, 10938.	5.8	88
31	Toxoplasma gondii myosins B/C. Journal of Cell Biology, 2001, 155, 613-624.	2.3	87
32	Mycobacterium marinum Degrades Both Triacylglycerols and Phospholipids from Its Dictyostelium Host to Synthesise Its Own Triacylglycerols and Generate Lipid Inclusions. PLoS Pathogens, 2017, 13, e1006095.	2.1	83
33	Prison Break: Pathogens' Strategies To Egress from Host Cells. Microbiology and Molecular Biology Reviews, 2012, 76, 707-720.	2.9	82
34	WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion. Molecular Biology of the Cell, 2013, 24, 2714-2726.	0.9	82
35	WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5906-E5915.	3. 3	79
36	Mycobacterium marinum antagonistically induces an autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-dependent manner. PLoS Pathogens, 2017, 13, e1006344.	2.1	77

#	Article	lF	CITATIONS
37	Intracompartmental sorting of essential myosin light chains: Molecular dissection and in vivo monitoring by epitope tagging. Cell, 1991, 66, 277-289.	13.5	76
38	A Myosin I Is Involved in Membrane Recycling from Early Endosomes. Journal of Cell Biology, 2000, 150, 1013-1026.	2.3	76
39	Lipid droplet dynamics at early stages of <i>Mycobacterium marinum</i> infection in <i>Dictyostelium</i> . Cellular Microbiology, 2015, 17, 1332-1349.	1.1	76
40	Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNAMet formylation in Apicomplexa. Molecular Microbiology, 2010, 76, 706-718.	1.2	75
41	Autophagy in <i> Dictyostelium </i> : Mechanisms, regulation and disease in a simple biomedical model. Autophagy, 2017, 13, 24-40.	4.3	74
42	Morphology and Dynamics of the Endocytic Pathway inDictyostelium discoideum. Molecular Biology of the Cell, 2002, 13, 1390-1407.	0.9	72
43	Myosin-I nomenclature. Journal of Cell Biology, 2001, 155, 703-704.	2.3	71
44	Optimized Fixation and Immunofluorescence Staining Methods for <i>Dictyostelium</i> Cells. , 2006, 346, 327-338.		68
45	Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs. PLoS ONE, 2013, 8, e58126.	1.1	68
46	Rab7 and Rab9 Are Recruited onto Late Endosomes by Biochemically Distinguishable Processes. Journal of Biological Chemistry, 1995, 270, 25541-25548.	1.6	67
47	The autophagic machinery ensures nonlytic transmission of mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E687-92.	3.3	67
48	Charged Solvatochromic Dyes as Signal Transducers in pH Independent Fluorescent and Colorimetric Ion Selective Nanosensors. Analytical Chemistry, 2015, 87, 9954-9959.	3.2	62
49	Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets. Biochimie, 2017, 141, 54-61.	1.3	61
50	Rab-GDI presents functional Rab9 to the intracellular transport machinery and contributes selectivity to Rab9 membrane recruitment. Journal of Biological Chemistry, 1994, 269, 15427-30.	1.6	58
51	Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneity in vivo. FEBS Letters, 1990, 269, 457-464.	1.3	56
52	Role of magnesium and a phagosomal P-type ATPase in intracellular bacterial killing. Cellular Microbiology, 2011, 13, 246-258.	1.1	55
53	Dictyostelium discoideumprotein disulfide isomerase, an endoplasmic reticulum resident enzyme lacking a KDEL-type retrieval signal. FEBS Letters, 1997, 418, 357-362.	1.3	54
54	Unconventional Myosins, Actin Dynamics and Endocytosis: A Ménage à Trois?. Traffic, 2003, 4, 358-366.	1.3	50

#	Article	IF	CITATIONS
55	When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Frontiers in Cellular and Infection Microbiology, 2017, 7, 529.	1.8	47
56	Involvement of the AP-1 Adaptor Complex in Early Steps of Phagocytosis and Macropinocytosis. Molecular Biology of the Cell, 2004, 15, 861-869.	0.9	43
57	Identification of a Novel Saturable Endoplasmic Reticulum Localization Mechanism Mediated by the C-Terminus of a <i>Dictyostelium</i> Protein Disulfide Isomerase. Molecular Biology of the Cell, 2000, 11, 3469-3484.	0.9	42
58	Rab8a regulates the exocyst-mediated kiss-and-run discharge of the <i>Dictyostelium</i> contractile vacuole. Molecular Biology of the Cell, 2012, 23, 1267-1282.	0.9	42
59	Dynamin A, Myosin IB and Abp1 Couple Phagosome Maturation to Fâ€Actin Binding. Traffic, 2012, 13, 120-130.	1.3	42
60	A microfluidic cell-trapping device for single-cell tracking of host–microbe interactions. Lab on A Chip, 2016, 16, 3276-3285.	3.1	42
61	Mucolipin controls lysosome exocytosis in <i>Dictyostelium</i> . Journal of Cell Science, 2012, 125, 2315-22.	1.2	41
62	Quantitative Analysis of Phagocytosis and Phagosome Maturation. Methods in Molecular Biology, 2013, 983, 383-402.	0.4	41
63	Establishment and Validation of Whole-Cell Based Fluorescence Assays to Identify Anti-Mycobacterial Compounds Using the Acanthamoeba castellanii - Mycobacterium marinum Host-Pathogen System. PLoS ONE, 2014, 9, e87834.	1.1	41
64	A Myosin IK-Abp1-PakB Circuit Acts as a Switch to Regulate Phagocytosis Efficiency. Molecular Biology of the Cell, 2010, 21, 1505-1518.	0.9	39
65	Vps13F links bacterial recognition and intracellular killing in <i>Dictyostelium</i> . Cellular Microbiology, 2017, 19, e12722.	1.1	39
66	Distinct <scp><i>Mycobacterium marinum</i></scp> phosphatases determine pathogen vacuole phosphoinositide pattern, phagosome maturation, and escape to the cytosol. Cellular Microbiology, 2019, 21, e13008.	1.1	39
67	In Silico Driven Design and Synthesis of Rhodanine Derivatives as Novel Antibacterials Targeting the Enoyl Reductase InhA. Journal of Medicinal Chemistry, 2016, 59, 10917-10928.	2.9	35
68	PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection. PLoS Pathogens, 2019, 15, e1007551.	2.1	35
69	Setting Up and Monitoring an Infection of Dictyostelium discoideum with Mycobacteria. Methods in Molecular Biology, 2013, 983, 403-417.	0.4	34
70	Coordinated Ras and Rac Activity Shapes Macropinocytic Cups and Enables Phagocytosis of Geometrically Diverse Bacteria. Current Biology, 2020, 30, 2912-2926.e5.	1.8	33
71	A unique chicken B-creatine kinase gene gives rise to two B-creatine kinase isoproteins with distinct N termini by alternative splicing. Journal of Biological Chemistry, 1990, 265, 11656-66.	1.6	33
72	Live Imaging of Mycobacterium marinum Infection in Dictyostelium discoideum. Methods in Molecular Biology, 2015, 1285, 369-385.	0.4	31

#	Article	IF	CITATIONS
73	Exploring Anti-Bacterial Compounds against Intracellular Legionella. PLoS ONE, 2013, 8, e74813.	1.1	31
74	Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets. Scientific Reports, 2018, 8, 3939.	1.6	30
75	Of Amoebae and Men: Extracellular DNA Traps as an Ancient Cell-Intrinsic Defense Mechanism. Frontiers in Immunology, 2016, 7, 269.	2.2	28
76	Methods to Monitor and Quantify Autophagy in the Social Amoeba Dictyostelium discoideum. Cells, 2017, 6, 18.	1.8	28
77	The Tail Domain of Myosin M Catalyses Nucleotide Exchange on Rac1 GTPases and Can Induce Actin-Driven Surface Protrusions. Traffic, 2000, 1, 399-410.	1.3	27
78	Alternative ribosomal initiation gives rise to chicken brain-type creatine kinase isoproteins with heterogeneous amino termini. Journal of Biological Chemistry, 1990, 265, 4498-506.	1.6	27
79	Inhibitors of Mycobacterium marinum virulence identified in a Dictyostelium discoideum host model. PLoS ONE, 2017, 12, e0181121.	1.1	26
80	How many is enough? exploring the myosin repertoire in the model eukaryoteDictyostelium discoideum. Cell Biochemistry and Biophysics, 1999, 30, 389-411.	0.9	24
81	A potentially exhaustive screening strategy reveals two novel divergent myosins inDictyostelium. Cell Biochemistry and Biophysics, 1999, 30, 413-435.	0.9	24
82	Conidial Melanin of the Human-Pathogenic Fungus Aspergillus fumigatus Disrupts Cell Autonomous Defenses in Amoebae. MBio, 2020, 11 , .	1.8	23
83	Localization of all four ZnT zinc transporters in <i>Dictyostelium</i> and impact of ZntA and B knockout on bacteria killing. Journal of Cell Science, 2018, 131, .	1.2	22
84	Preparation of Intact, Highly Purified Phagosomes from <i>Dictyostelium</i> ., 2006, 346, 439-448.		21
85	Survey on medicinal plants traditionally used in Senegal for the treatment of tuberculosis (TB) and assessment of their antimycobacterial activity. Journal of Ethnopharmacology, 2018, 216, 71-78.	2.0	20
86	<i>Mycobacterium bovis</i> uses the ESX-1 Type VII secretion system to escape predation by the soil-dwelling amoeba <i>Dictyostelium discoideum</i> . ISME Journal, 2020, 14, 919-930.	4.4	19
87	The Balance in the Delivery of ER Components and the Vacuolar Proton Pump to the Phagosome Depends on Myosin IK in Dictyostelium. Molecular and Cellular Proteomics, 2012, 11, 886-900.	2.5	15
88	Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds. BMC Developmental Biology, 2012, 12, 5.	2.1	15
89	Amoebae-Based Screening Reveals a Novel Family of Compounds Restricting Intracellular <i>Legionella pneumophila</i> . ACS Infectious Diseases, 2015, 1, 327-338.	1.8	15
90	Functions of the <i>Dictyostelium</i> LIMP-2/CD36 homologues in bacteria uptake, phagolysosome biogenesis and host cell defence. Journal of Cell Science, 2018, 131, .	1.2	14

#	Article	IF	Citations
91	<scp> <i>Mycobacterium marinum</i> </scp> produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Cellular Microbiology, 2020, 22, e13163.	1.1	14
92	Molecular Mechanisms of Membrane Trafficking. What do we Learn from Dictyostelium discoideum?. Protist, 1999, 150, 235-243.	0.6	13
93	Maturation Changes in Purified Phagosomes. Methods in Molecular Biology, 2008, 445, 327-337.	0.4	13
94	Zn ²⁺ Intoxication of Mycobacterium marinum during Dictyostelium discoideum Infection Is Counteracted by Induction of the Pathogen Zn ²⁺ Exporter CtpC. MBio, 2021, 12, .	1.8	12
95	Adrenergic antagonists restrict replication of Legionella. Microbiology (United Kingdom), 2015, 161, 1392-1406.	0.7	11
96	The Saposin-Like Protein AplD Displays Pore-Forming Activity and Participates in Defense Against Bacterial Infection During a Multicellular Stage of Dictyostelium discoideum. Frontiers in Cellular and Infection Microbiology, 2018, 8, 73.	1.8	11
97	Transcriptional Responses of Dictyostelium discoideum Exposed to Different Classes of Bacteria. Frontiers in Microbiology, 2020, 11, 410.	1.5	11
98	Production of Reagents and Optimization of Methods for Studying Calmodulin-Binding Proteins. Protein Expression and Purification, 1999, 15, 24-33.	0.6	10
99	Secreted heme peroxidase from Dictyostelium discoideum: Insights into catalysis, structure, and biological role. Journal of Biological Chemistry, 2018, 293, 1330-1345.	1.6	10
100	Editorial: Amoebae as Host Models to Study the Interaction With Pathogens. Frontiers in Cellular and Infection Microbiology, 2019, 9, 47.	1.8	10
101	Antimycobacterial activity in a single-cell infection assay of ellagitannins from Combretum aculeatum and their bioavailable metabolites. Journal of Ethnopharmacology, 2019, 238, 111832.	2.0	10
102	[28] Reconstitution of Rab9 endosomal targeting and nucleotide exchange using purified Rab9-GDP dissociation inhibitor complexes and endosome-enriched membranes. Methods in Enzymology, 1995, 257, 253-259.	0.4	9
103	Detecting, Visualizing and Quantitating the Generation of Reactive Oxygen Species in an Amoeba Model System. Journal of Visualized Experiments, 2013, , e50717.	0.2	8
104	Identification of Anti-Mycobacterium and Anti-Legionella Compounds With Potential Distinctive Structural Scaffolds From an HD-PBL Using Phenotypic Screens in Amoebae Host Models. Frontiers in Microbiology, 2020, 11, 266.	1.5	8
105	Dictyostelium EHD associates with Dynamin and participates in phagosome maturation. Journal of Cell Science, 2016, 129, 2354-67.	1.2	6
106	Selective Membrane Recruitment of Rab GTPases. Cold Spring Harbor Symposia on Quantitative Biology, 1995, 60, 221-227.	2.0	6
107	Potassium Sensitive Optical Nanosensors Containing Voltage Sensitive Dyes. Chimia, 2015, 69, 196.	0.3	5
108	Molecular analysis of protein sorting during biogenesis of muscle cytoarchitecture. Symposia of the Society for Experimental Biology, 1992, 46, 219-35.	0.0	5

#	Article	IF	CITATIONS
109	Unconventional myosins at the crossroad of signal transduction and cytoskeleton remodeling. Protoplasma, 1999, 209, 28-37.	1.0	4
110	Novel Single-Cell and High-Throughput Microscopy Techniques to Monitor Dictyostelium discoideum–Mycobacterium marinum Infection Dynamics. Methods in Molecular Biology, 2021, 2314, 183-203.	0.4	4
111	Conserved mechanisms drive host-lipid access, import, and utilization in Mycobacterium tuberculosis and M.Âmarinum., 2022, , 133-161.		4
112	[3] Expression of Rab9 protein in Escherichia coli: purification and isoprenylation in vitro. Methods in Enzymology, 1995, 257, 15-21.	0.4	3
113	[15] Transport from late endosomes to trans-golgi network in semiintact cell extracts. Methods in Enzymology, 1992, 219, 153-159.	0.4	2
114	Lowe syndrome–linked endocytic adaptors direct membrane cycling kinetics with OCRL in <i>Dictyostelium discoideum</i> . Molecular Biology of the Cell, 2019, 30, 2268-2282.	0.9	2
115	Vacuolins and myosin VII are required for phagocytic uptake and phagosomal membrane recycling in <i>Dictyostelium discoideum</i> . Journal of Cell Science, 2020, 133, .	1.2	2
116	Do Class I Myosins Exert Their Functions through Regulation of Actin Dynamics?., 0,, 39-59.		1
117	A brief historical and evolutionary perspective on the origin of cellular microbiology research. Cellular Microbiology, 2019, 21, e13083.	1.1	1
118	First-order agent-based models of emergent behaviour of Dictyostelium discoideum and their inspiration for swarm robotics. Artificial Life and Robotics, 2020, 25, 643-655.	0.7	1
119	RB155, RB156 and RB189 antibodies do not recognize the D. discoideum Tsg101 protein by western blot. Antibody Reports, 2019, 2, e109.	0.0	1
120	Al842, Al843, Al844 and Al177 antibodies do not recognize a FLAG-tagged protein by immunofluorescence in D. discoideum cells. Antibody Reports, 2020, 3, e126.	0.0	1
121	The Biochemistry Department of the University of Geneva: Understanding the Molecular Basis and Function of Intracellular Organization. Chimia, 2009, 63, 830.	0.3	0
122	<i>Cellular Microbiology</i> 1999–2019. Cellular Microbiology, 2019, 21, e13106.	1.1	0
123	Second-order agent-based models of emergent behaviour of Dictyostelium discoideum and their inspiration for swarm robotics. Artificial Life and Robotics, 2020, 25, 656-665.	0.7	0
124	The great escape: dissecting the interactions between Mycobacterium bovis and the soil amoeba Dictyostelium discoideum. Access Microbiology, 2019, 1 , .	0.2	0
125	Al842, Al843, Al844 and Al177 antibodies do not recognize a FLAG-tagged protein expressed in D. discoideum by western blot. Antibody Reports, 2020, 3, e111.	0.0	0
126	The RB008 antibody does not recognize D. discoideum NoxA by western blot. Antibody Reports, 2020, 3, e190.	0.0	0