Yuanwen Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3380220/publications.pdf Version: 2024-02-01

YHANWEN HANC

#	Article	IF	CITATIONS
1	A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	13.1	421
2	Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. Journal of Power Sources, 2013, 227, 101-105.	4.0	250
3	Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nature Communications, 2019, 10, 5384.	5.8	249
4	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375, 1411-1417.	6.0	230
5	Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nature Nanotechnology, 2018, 13, 260-266.	15.6	185
6	Rational design of silicon structures for optically controlled multiscale biointerfaces. Nature Biomedical Engineering, 2018, 2, 508-521.	11.6	183
7	Strain-insensitive intrinsically stretchable transistors and circuits. Nature Electronics, 2021, 4, 143-150.	13.1	170
8	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	13.7	170
9	A Highly Stretchable and Selfâ€Healing Supramolecular Elastomer Based on Sliding Crosslinks and Hydrogen Bonds. Advanced Functional Materials, 2020, 30, 1907139.	7.8	165
10	Inorganic semiconductor biointerfaces. Nature Reviews Materials, 2018, 3, 473-490.	23.3	154
11	Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nature Materials, 2016, 15, 1023-1030.	13.3	132
12	Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science, 2020, 367, 1372-1376.	6.0	132
13	Skin-Inspired Electronics Enabled by Supramolecular Polymeric Materials. CCS Chemistry, 2019, 1, 431-447.	4.6	118
14	Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14769-14778.	3.3	108
15	Atomic gold–enabled three-dimensional lithography for silicon mesostructures. Science, 2015, 348, 1451-1455.	6.0	82
16	Nongenetic optical neuromodulation with silicon-based materials. Nature Protocols, 2019, 14, 1339-1376.	5.5	62
17	Advancing models of neural development with biomaterials. Nature Reviews Neuroscience, 2021, 22, 593-615.	4.9	60
18	Metal Ions Induce Growth and Magnetism Alternation of αâ€Fe ₂ O ₃ Crystals Bound by Highâ€Index Facets. Chemistry - A European Journal, 2012, 18, 8957-8963.	1.7	57

YUANWEN JIANG

#	Article	IF	CITATIONS
19	Al ³⁺ -controlled synthesis and magnetic property of α-Fe ₂ O ₃ nanoplates. CrystEngComm, 2013, 15, 443-446.	1.3	48
20	Roadmap on semiconductor–cell biointerfaces. Physical Biology, 2018, 15, 031002.	0.8	45
21	Texturing Silicon Nanowires for Highly Localized Optical Modulation of Cellular Dynamics. Nano Letters, 2018, 18, 4487-4492.	4.5	45
22	Ultra ompliant and Tough Thermochromic Polymer for Selfâ€Regulated Smart Windows. Advanced Functional Materials, 2021, 31, 2100686.	7.8	44
23	Laser writing of nitrogen-doped silicon carbide for biological modulation. Science Advances, 2020, 6, .	4.7	33
24	Adipose-Derived Stromal Cells Seeded in Pullulan-Collagen Hydrogels Improve Healing in Murine Burns. Tissue Engineering - Part A, 2021, 27, 844-856.	1.6	31
25	Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces. Nature Nanotechnology, 2021, 16, 206-213.	15.6	30
26	Biopolymer-assisted construction and gas-sensing study of uniform solid and hollow ZnSn(OH)6 spheres. Sensors and Actuators B: Chemical, 2013, 178, 119-124.	4.0	29
27	Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies. Nature Communications, 2017, 8, 2014.	5.8	21
28	Nickel ions inducing growth of high-index faceted $\hat{I}\pm$ -Fe2O3 and their facet-controlled magnetic properties. RSC Advances, 2013, 3, 8261.	1.7	17
29	Structured silicon for revealing transient and integrated signal transductions in microbial systems. Science Advances, 2020, 6, eaay2760.	4.7	14
30	3D calcite heterostructures for dynamic and deformable mineralized matrices. Nature Communications, 2017, 8, 509.	5.8	7
31	Inhibiting Fibroblast Mechanotransduction Modulates Severity of Idiopathic Pulmonary Fibrosis. Advances in Wound Care, 2022, 11, 511-523.	2.6	5
32	Inside Cover: Metal Ions Induce Growth and Magnetism Alternation of α-Fe2O3 Crystals Bound by High-Index Facets (Chem. Eur. J. 29/2012). Chemistry - A European Journal, 2012, 18, 8850-8850.	1.7	0
33	Silicon Mesostructures for Phospholipid Based Bioelectric Device and Deterministic Neuromodulation. Biophysical Journal, 2016, 110, 147a.	0.2	0