Shanyong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3380174/publications.pdf

Version: 2024-02-01

687363 642732 23 678 13 23 citations h-index g-index papers 23 23 23 1118 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highâ€Performance Red, Green, and Blue Electroluminescent Devices Based on Blue Emitters with Small Singlet–Triplet Splitting and Ambipolar Transport Property. Advanced Functional Materials, 2013, 23, 2672-2680.	14.9	139
2	Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human–machine interaction. Journal of Materials Chemistry C, 2018, 6, 13120-13127.	5.5	90
3	New multifunctional phenanthroimidazole–phosphine oxide hybrids for high-performance red, green and blue electroluminescent devices. Journal of Materials Chemistry C, 2014, 2, 6817-6826.	5.5	68
4	A water-based silver nanowire ink for large-scale flexible transparent conductive films and touch screens. Journal of Materials Chemistry C, 2017, 5, 2404-2414.	5.5	65
5	Solution-processed small-molecular white organic light-emitting diodes based on a thermally activated delayed fluorescence dendrimer. Journal of Materials Chemistry C, 2017, 5, 10001-10006.	5.5	49
6	Luminescent Dendrimers Composed of Quinacridone Core and Carbazole Dendrons: Structure, Electrochemical, and Photophysical Properties. Journal of Physical Chemistry C, 2012, 116, 17796-17806.	3.1	36
7	Constructing high-performance blue, yellow and red electroluminescent devices based on a class of multifunctional organic materials. Journal of Materials Chemistry C, 2013, 1, 6594.	5.5	36
8	Preparation and Characterization of Mo Doped in BiVO4 with Enhanced Photocatalytic Properties. Materials, 2017, 10, 976.	2.9	31
9	Polymorph, assembly, luminescence and semiconductor properties of a quinacridone derivative with extended ï€-conjugated framework. Journal of Materials Chemistry C, 2013, 1, 5548.	5.5	29
10	Indolo[3,2 -b] carbazole derivative as a fluorescent probe for fluoride ion and carbon dioxide detections. Sensors and Actuators B: Chemical, 2017, 250, 591-600.	7.8	24
11	Hierarchical Porous Carbon Derived from Sichuan Pepper for High-Performance Symmetric Supercapacitor with Decent Rate Capability and Cycling Stability. Nanomaterials, 2019, 9, 553.	4.1	21
12	Copper Nanowire Dispersion through an Electrostatic Dispersion Mechanism for High-Performance Flexible Transparent Conducting Films and Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5264-5275.	8.0	19
13	A systematic and effective research procedure for silver nanowire ink. Journal of Alloys and Compounds, 2017, 706, 164-175.	5.5	14
14	3-Benzoyl-4H-chromen-4-one: A novel twisted acceptor for highly efficient thermally activated delayed fluorescence emitters. Dyes and Pigments, 2020, 183, 108744.	3.7	13
15	Oligo(3-hexylthiophene)-functionalized dicyano-ethylene substituted quinacridone derivatives: synthesis, characterizations and applications as acceptors in photovoltaic devices. New Journal of Chemistry, 2012, 36, 1788.	2.8	12
16	Overcoming the conductivity limit of insulator through tunneling-current junction welding: Ag@PVP core–shell nanowire for high-performance transparent electrode. Journal of Materials Chemistry C, 2021, 9, 3957-3968.	5.5	6
17	A Phenanthroline-Based Fluorescent Probe for Highly Selective Detection of Extreme Alkalinity (pH > 14) in Aqueous Solution. Nanoscale Research Letters, 2019, 14, 318.	5.7	6
18	An efficient polymer for producing electrospun transparent conducting films through simple procedures and a mild post-process. RSC Advances, 2017, 7, 46621-46628.	3.6	5

SHANYONG CHEN

#	Article	IF	CITATION
19	A quinacridone derivative with intensive emission in both solution and the solid state <i>via</i> a facile preparation for cell imaging applications. Journal of Materials Chemistry B, 2019, 7, 3192-3196.	5.8	5
20	Triphenylsilyl-Promoted Iridium Complex for High-Performance Green-Yellow Phosphorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2021, 125, 24671-24684.	3.1	5
21	Blocking energy-loss pathways for phosphorescent organic light emitting devices with novel exciplex-forming host. Dyes and Pigments, 2020, 182, 108694.	3.7	3
22	Novel phenanthro [9,10-d] imidazole-zinc complex as a host for high-performance OLEDs. Journal of Materials Science: Materials in Electronics, 2021, 32, 22459-22471.	2.2	1
23	Alkyl-promoted iridium complex for high-performance deep-red phosphorescent organic light-emitting diodes. Dyes and Pigments, 2022, 204, 110484.	3.7	1