Jana Libantova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3380135/publications.pdf

Version: 2024-02-01

516710 552781 43 709 16 26 citations g-index h-index papers 43 43 43 832 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heavy-metal stress induced accumulation of chitinase isoforms in plants. Molecular Biology Reports, 2008, 35, 579-588.	2.3	91
2	Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Molecular Biology Reports, 2011, 38, 3437-3446.	2.3	57
3	Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifoliaL.) show induction of chitinase activity upon mimicking the presence of prey. Planta, 2005, 222, 1020-1027.	3.2	55
4	Study on metal-triggered callose deposition in roots of maize and soybean. Biologia (Poland), 2012, 67, 698-705.	1.5	40
5	Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars. Plant Cell, Tissue and Organ Culture, 2011, 107, 317-323.	2.3	38
6	Expression of a cucumber class III chitinase and Nicotiana plumbaginifoliaclass I glucanase genes in transgenic potato plants. Plant Cell, Tissue and Organ Culture, 2004, 79, 161-168.	2.3	36
7	\hat{l}^2 -1,3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale. Biologia (Poland), 2013, 68, 241-248.	1.5	34
8	Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theoretical and Applied Genetics, 2008, 117, 1325-1334.	3.6	33
9	Plant chitinase responses to different metal-type stresses reveal specificity. Plant Cell Reports, 2014, 33, 1789-1799.	5.6	32
10	The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. Protoplasma, 2014, 251, 1077-1087.	2.1	25
11	Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.). Molecular Biology Reports, 2009, 36, 851-856.	2.3	23
12	Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential. Molecular Biotechnology, 2019, 61, 916-928.	2.4	22
13	Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia β-1,3-glucanase genes in transgenic potato plants. Acta Physiologiae Plantarum, 2007, 29, 133-141.	2.1	20
14	Defense responses of soybean roots during exposure to cadmium, excess of nitrogen supply and combinations of these stressors. Molecular Biology Reports, 2012, 39, 10077-10087.	2.3	19
15	Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant \hat{l}^2 -1,3-glucanases. Planta, 2013, 238, 715-725.	3.2	18
16	The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA. Gene, 2002, 296, 129-137.	2.2	17
17	Cultivar-specific kinetics of chitinase induction in soybean roots during exposure to arsenic. Molecular Biology Reports, 2013, 40, 2127-2138.	2.3	17
18	Plant tissue-specific promoters can drive gene expression in Escherichia coli. Plant Cell, Tissue and Organ Culture, 2013, 113, 387-396.	2.3	17

#	Article	IF	CITATIONS
19	Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). Planta, 2017, 245, 313-327.	3.2	14
20	Maternal inheritance of chloroplast DNA in Pinus mugo Turra: a case study of Pinus mugoÂ×ÂPinus sylvestris crossing. Plant Systematics and Evolution, 2018, 304, 71-76.	0.9	13
21	Variable responses of soybean chitinases to arsenic and cadmium stress at the whole plant level. Plant Growth Regulation, 2015, 76, 147-155.	3.4	12
22	Biochemical and antifungal characteristics of recombinant class I chitinase from Drosera rotundifolia. International Journal of Biological Macromolecules, 2020, 161, 854-863.	7.5	9
23	Spacer length-dependent protection of specific activity of pollen and/or embryo promoters from influence of CaMV 35S promoter/enhancer in transgenic plants. Plant Cell, Tissue and Organ Culture, 2014, 118, 507-518.	2.3	8
24	Application of Arabidopsis tissue-specific CRUC promoter in the Cre/loxP self-excision strategy for generation of marker-free oilseed rape: potential advantages and drawbacks. Acta Physiologiae Plantarum, 2014, 36, 1399-1409.	2.1	8
25	Cd accumulation potential as a marker for heavy metal tolerance in soybean. Israel Journal of Plant Sciences, 2015, 62, 160-166.	0.5	8
26	The pollen- and embryo-specific Arabidopsis DLL promoter bears good potential for application in marker-free Cre/loxP self-excision strategy. Plant Cell Reports, 2015, 34, 469-481.	5.6	8
27	Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V \hat{l}^2 -1,3-glucanase. Planta, 2017, 245, 77-91.	3.2	6
28	A modified low copy number binary vector pUN for Agrobacterium-mediated plant transformation. Biologia Plantarum, 2007, 51, 538-540.	1.9	5
29	Basic \hat{l}^2 -1,3-Glucanase from Drosera binata Exhibits Antifungal Potential in Transgenic Tobacco Plants. Plants, 2021, 10, 1747.	3.5	5
30	Reinforced evidence on partial compatibility between Pinus sylvestris and Pinus mugo and on maternal inheritance of chloroplast DNA in the Pinus mugo \tilde{A} — Pinus sylvestris cross. Silvae Genetica, 2020, 69, 108-115.	0.8	4
31	Development of embryo-like structures in the suspension cultures of flax coincides with secretion of chitinase-like proteins. Acta Physiologiae Plantarum, 2010, 32, 651-656.	2.1	3
32	Cre-mediated marker gene removal for production of biosafe commercial oilseed rape. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	3
33	Hybridization Processes in Putative Hybrid Swarms of Scots Pine and Mountain Dwarf Pine as Revealed by Chloroplast DNA. Acta Biologica Cracoviensia Series Botanica, 2015, 56, 61-66.	0.5	2
34	Expression Pattern of Arabidopsis Thaliana Pollen- and Embryo-Specific Promoter in Transgenic Tobacco Plants. Acta Biologica Cracoviensia Series Botanica, 2014, 56, 73-79.	0.5	1
35	The expression profile of Arabidopsis thaliana \hat{l}^2 -1,3-glucanase promoter in tobacco. Molecular Biology, 2015, 49, 543-549.	1.3	1
36	Sequence analysis of sundew chitinase gene. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 4-6.	0.8	1

#	Article	IF	CITATIONS
37	IN GEL DETECTION OF A HIS-TAGGED TRANSGENE FOLLOWING THE SEPARATION OF CRUDE PLANT PROTEIN EXTRACTS WITH SDS PAGE. Journal of Microbiology, Biotechnology and Food Sciences, 2019, 9, 127-131.	0.8	1
38	SIMPLE VERIFICATION OF in vitro – GROWN CLONES OF THE GENUS Drosera L. USING ITS MOLECULAR MARKERS. Acta Scientiarum Polonorum, Hortorum Cultus, 2018, 17, 159-164.	0.6	1
39	NEGATIVE EFFECT OF METALLOID STRESS ON WHEAT. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 4, 76-78.	0.8	1
40	Pollen fertility and seed viability of putative hybrid swarms of Pinus sylvestris and Pinus mugo in Slovakia. Silvae Genetica, 2019, 68, 14-21.	0.8	1
41	Modified small-scale batch procedure for isolation of dsRNA from Cryphonectria parasitica. Phytoprotection, 0, 88, 27-29.	0.3	O
42	Wheat pathogen resistance and chitinase profile. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 15-18.	0.8	0
43	Optimalisation of expression conditions for production of round-leaf sundew chitinase (Drosera) Tj ETQq1 1 0.76	84314 rgBT 0.6	Overlock 1