Zengming Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337999/publications.pdf

Version: 2024-02-01

430874 642732 1,163 21 18 23 citations g-index h-index papers 30 30 30 1264 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cu/Ni-Catalyzed Cyanomethylation of Alkenes with Acetonitrile for the Synthesis of \hat{l}^2 , \hat{l}^3 -Unsaturated Nitriles. Journal of Organic Chemistry, 2020, 85, 6143-6150.	3.2	6
2	Palladium-catalyzed allylic C–H oxidation under simple operation and mild conditions. Organic and Biomolecular Chemistry, 2019, 17, 3103-3107.	2.8	7
3	Direct Synthesis of Alkenylboronates from Alkenes and Pinacol Diboron via Copper Catalysis. Organic Letters, 2019, 21, 142-146.	4.6	31
4	Hydrochloric Acid-Promoted Intermolecular 1,2-Thiofunctionalization of Aromatic Alkenes. Journal of Organic Chemistry, 2018, 83, 2818-2829.	3.2	26
5	Copperâ€Mediated Cyanation of Aryl C—H Bond with Removable Bidenate Auxiliary Using Acetonitrile as the Cyano Source. Chinese Journal of Chemistry, 2018, 36, 1139-1142.	4.9	18
6	Copper-catalyzed aromatic C–H alkoxylation with alcohols under aerobic conditions. Organic and Biomolecular Chemistry, 2017, 15, 1261-1267.	2.8	21
7	Alkyne Hydroheteroarylation: Enantioselective Coupling of Indoles and Alkynes via Rh-Hydride Catalysis. Journal of the American Chemical Society, 2017, 139, 10641-10644.	13.7	90
8	Copperâ€Catalyzed Acyloxycyanation of Alkynes with Acetonitrile: Regioselective Construction of Cyclic Acrylonitriles by 6â€ <i>endo</i> or 5â€ <i>exo</i> Cyclization. Advanced Synthesis and Catalysis, 2017, 359, 3515-3519.	4.3	29
9	Copperâ€Catalyzed Cyanomethylation of Substituted Tetrahydroisoquinolines with Acetonitrile. Advanced Synthesis and Catalysis, 2016, 358, 2392-2397.	4.3	38
10	Copper atalyzed Aminoxylation of Different Types of Hydrocarbons with TEMPO: A Concise Route to <i>Nâ€</i> Alkoxyamine Derivatives. Advanced Synthesis and Catalysis, 2015, 357, 3495-3500.	4.3	17
11	Cuâ€Catalyzed Cyanation of Arylboronic Acids with Acetonitrile: A Dual Role of TEMPO. Chemistry - A European Journal, 2015, 21, 13246-13252.	3.3	44
12	Acetonitrile as a Cyanating Reagent: Cu-Catalyzed Cyanation of Arenes. Organic Letters, 2015, 17, 2602-2605.	4.6	72
13	Cu-Catalyzed Cyanation of Indoles with Acetonitrile as a Cyano Source. Journal of Organic Chemistry, 2015, 80, 8868-8873.	3.2	57
14	Copperâ€Catalyzed Aromatic CH Bond Cyanation by CCN Bond Cleavage of Inert Acetonitrile. Chemistry - A European Journal, 2013, 19, 16880-16886.	3.3	104
15	Recent Progress in the Research of Transition-Metal-Catalyzed Câ€"CN Bond Cleavage. Chinese Journal of Organic Chemistry, 2013, 33, 1407.	1.3	26
16	Palladiumâ€Catalyzed Intramolecular Decarboxylative Coupling of Arene Carboxylic Acids/Esters with Aryl Bromides. Chemistry - A European Journal, 2012, 18, 4859-4865.	3.3	69
17	Domino Sonogashira Coupling/Cyclization Reaction Catalyzed by Copper and ppb Levels of Palladium: A Concise Route to Indoles and Benzo[<i>b</i>]furans. Advanced Synthesis and Catalysis, 2011, 353, 713-718.	4.3	79
18	Cupric Halideâ€Mediated Intramolecular Halocyclization of <i>N</i> â€Electronâ€Withdrawing Groupâ€Substituted 2â€Alkynylanilines for the Synthesis of 3â€Haloindoles. Advanced Synthesis and Catalysis, 2009, 351, 3107-3112.	4.3	51

ZENGMING SHEN

#	Article	IF	CITATIONS
19	Benzofurans Prepared by CH Bond Functionalization with Acylsilanes. Angewandte Chemie - International Edition, 2009, 48, 784-786.	13.8	88
20	Mechanistic Insights into the Rhodium-Catalyzed Intramolecular Ketone Hydroacylation. Journal of the American Chemical Society, 2009, 131, 1077-1091.	13.7	125
21	Rh-Catalyzed Carbonyl Hydroacylation:  An Enantioselective Approach to Lactones. Journal of the American Chemical Society, 2008, 130, 2916-2917.	13.7	132