
David R Schiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3379789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Population Biology of Large Brown Seaweeds: Ecological Consequences of Multiphase Life Histories in Dynamic Coastal Environments. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 343-372.	8.3	265
2	TEN YEARS OF INDUCED OCEAN WARMING CAUSES COMPREHENSIVE CHANGES IN MARINE BENTHIC COMMUNITIES. Ecology, 2004, 85, 1833-1839.	3.2	243
3	Local Extinction of Bull Kelp (Durvillaea spp.) Due to a Marine Heatwave. Frontiers in Marine Science, 2019, 6, .	2.5	177
4	Community effects following the deletion of a habitat-forming alga from rocky marine shores. Oecologia, 2006, 148, 672-681.	2.0	134
5	Loss of predators and the collapse of southern California kelp forests (?): Alternatives, explanations and generalizations. Journal of Experimental Marine Biology and Ecology, 2010, 393, 59-70.	1.5	121
6	Effects of trampling on a rocky intertidal algal assemblage in southern New Zealand. Journal of Experimental Marine Biology and Ecology, 1999, 235, 213-235.	1.5	109
7	Sediment on rocky intertidal reefs: Effects on early post-settlement stages of habitat-forming seaweeds. Journal of Experimental Marine Biology and Ecology, 2006, 331, 158-172.	1.5	108
8	The structure and replenishment of rocky shore intertidal communities and biogeographic comparisons. Journal of Experimental Marine Biology and Ecology, 2004, 300, 309-342.	1.5	105
9	Rivets or bolts? When single species count in the function of temperate rocky reef communities. Journal of Experimental Marine Biology and Ecology, 2006, 338, 233-252.	1.5	105
10	Secondary foundation species enhance biodiversity. Nature Ecology and Evolution, 2018, 2, 634-639.	7.8	85
11	Biogeographic patterns and long-term changes on New Zealand coastal reefs: Non-trophic cascades from diffuse and local impacts. Journal of Experimental Marine Biology and Ecology, 2011, 400, 33-51.	1.5	73
12	Algal populations controlled by fish herbivory across a wave exposure gradient on southern temperate shores. Ecology, 2010, 91, 201-211.	3.2	71
13	Algal interactions on shallow subtidal reefs in northern New Zealand: A review. New Zealand Journal of Marine and Freshwater Research, 1988, 22, 481-489.	2.0	68
14	Impacts and negative feedbacks in community recovery over eight years following removal of habitat-forming macroalgae. Journal of Experimental Marine Biology and Ecology, 2011, 407, 108-115.	1.5	68
15	Impacts of Temperature on Primary Productivity and Respiration in Naturally Structured Macroalgal Assemblages. PLoS ONE, 2013, 8, e74413.	2.5	67
16	Wave-related mortality in zygotes of habitat-forming algae from different exposures in southern New Zealand: the importance of â€̃stickability'. Journal of Experimental Marine Biology and Ecology, 2003, 290, 229-245.	1.5	63
17	A dynamic energy budget model: parameterisation and application to the Pacific oyster Crassostrea gigas in New Zealand waters. Journal of Experimental Marine Biology and Ecology, 2008, 361, 42-48.	1.5	62
18	Seasonal variation in the reproductive activity and biochemical composition of the Pacific oyster <i>(Crassostrea gigas)</i> from the Marlborough Sounds, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2003, 37, 171-182.	2.0	60

DAVID R SCHIEL

#	Article	IF	CITATIONS
19	SEASCAPE-DEPENDENT SUBTIDAL–INTERTIDAL TROPHIC LINKAGES. Ecology, 2006, 87, 731-744.	3.2	58
20	Legacy Effects of Canopy Disturbance on Ecosystem Functioning in Macroalgal Assemblages. PLoS ONE, 2011, 6, e26986.	2.5	51
21	Demography and population biology of the invasive kelp Undaria pinnatifida on shallow reefs in southern New Zealand. Journal of Experimental Marine Biology and Ecology, 2012, 434-435, 25-33.	1.5	49
22	Population sinks resulting from degraded habitats of an obligate life-history pathway. Oecologia, 2011, 166, 131-140.	2.0	47
23	Feeding ecology of the banded wrasse <i>Notolabrus fucicola</i> (Labridae) in southern New Zealand: Prey items, seasonal differences, and ontogenetic variation. New Zealand Journal of Marine and Freshwater Research, 2001, 35, 925-933.	2.0	44
24	Transient effects of an invasive kelp on the community structure and primary productivity of an intertidal assemblage. Marine and Freshwater Research, 2016, 67, 103.	1.3	38
25	The KaikÅura earthquake in southern New Zealand: Loss of connectivity of marine communities and the necessity of a crossâ€ecosystem perspective. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1520-1534.	2.0	36
26	Shining Light on Benthic Macroalgae: Mechanisms of Complementarity in Layered Macroalgal Assemblages. PLoS ONE, 2014, 9, e114146.	2.5	35
27	To include or not to include (the invader in community analyses)? That is the question. Biological Invasions, 2016, 18, 1515-1521.	2.4	33
28	Organismal traits are more important than environment for species interactions in the intertidal zone. Ecology Letters, 2010, 13, 1160-1171.	6.4	32
29	Unmanned Aerial Vehicles (UAVs) for Monitoring Macroalgal Biodiversity: Comparison of RGB and Multispectral Imaging Sensors for Biodiversity Assessments. Remote Sensing, 2019, 11, 2332.	4.0	32
30	Influence of alongâ€shore advection and upwelling on coastal temperature at Kaikoura Peninsula, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2001, 35, 307-317.	2.0	29
31	Settlement rates of macroalgal algal propagules: Cross-species comparisons in a turbulent environment. Limnology and Oceanography, 2010, 55, 66-76.	3.1	25
32	Loss of Giant Kelp, Macrocystis pyrifera, Driven by Marine Heatwaves and Exacerbated by Poor Water Clarity in New Zealand. Frontiers in Marine Science, 2021, 8, .	2.5	25
33	DETECTING LONG-TERM CHANGE IN COMPLEX COMMUNITIES: A CASE STUDY FROM THE ROCKY INTERTIDAL ZONE. , 2005, 15, 1813-1832.		24
34	Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. Journal of Experimental Marine Biology and Ecology, 2015, 469, 10-17.	1.5	24
35	Controlling inputs from the land to sea: limit-setting, cumulative impacts and ki uta ki tai. Marine and Freshwater Research, 2016, 67, 57.	1.3	24
36	A host-specific habitat former controls biodiversity across ecological transitions in a rocky intertidal facilitation cascade. Marine and Freshwater Research, 2016, 67, 144.	1.3	21

DAVID R SCHIEL

#	Article	IF	CITATIONS
37	Heterogeneity within and among co-occurring foundation species increases biodiversity. Nature Communications, 2022, 13, 581.	12.8	21
38	Morphometric variation in <i>Haliotis iris</i> (Mollusca: Gastropoda): Analysis of 61 populations. New Zealand Journal of Marine and Freshwater Research, 1994, 28, 357-364.	2.0	20
39	Experimental Rehabilitation of Degraded Spawning Habitat of a Diadromous Fish, <i>Galaxias maculatus</i> (Jenyns, 1842) in Rural and Urban Streams. Restoration Ecology, 2014, 22, 319-326.	2.9	20
40	Transport of drifting fucoid algae: Nearshore transport and potential for long distance dispersal. Journal of Experimental Marine Biology and Ecology, 2017, 490, 34-41.	1.5	19
41	Cascading impacts of earthquakes and extreme heatwaves have destroyed populations of an iconic marine foundation species. Diversity and Distributions, 2021, 27, 2369-2383.	4.1	19
42	Reproductive biology and population structure of the banded wrasse, <i>Notolabrus fucicola</i> (Labridae) around Kaikoura, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2002, 36, 555-563.	2.0	17
43	Ecophysiology of Layered Macroalgal Assemblages: Importance of Subcanopy Species Biodiversity in Buffering Primary Production. Frontiers in Marine Science, 2018, 5, .	2.5	17
44	Unravelling seasonal trends in coastal marine heatwave metrics across global biogeographical realms. Scientific Reports, 2022, 12, 7740.	3.3	15
45	Integration of chlorophyll <i>a</i> fluorescence and photorespirometry techniques to understand production dynamics in macroaglal communities. Journal of Phycology, 2017, 53, 476-485.	2.3	13
46	Modified kelp seasonality and invertebrate diversity where an invasive kelp co-occurs with native mussels. Marine Biology, 2018, 165, 1.	1.5	12
47	Effects of sediment on early life history stages of habitat-dominating fucoid algae. Journal of Experimental Marine Biology and Ecology, 2019, 516, 44-50.	1.5	12
48	Spatio-temporal variation in species composition of New Zealand's whitebait fishery. New Zealand Journal of Marine and Freshwater Research, 2020, 54, 679-694.	2.0	12
49	Missing the Forest and the Trees: Utility, Limits and Caveats for Drone Imaging of Coastal Marine Ecosystems. Remote Sensing, 2021, 13, 3136.	4.0	12
50	Experimental analyses of diversity partitioning in southern hemisphere algal communities. Oecologia, 2019, 190, 179-193.	2.0	11
51	Earthquake-driven destruction of an intertidal habitat cascade. Aquatic Botany, 2020, 164, 103217.	1.6	11
52	Threshold Effects of Relative Sea-Level Change in Intertidal Ecosystems: Empirical Evidence from Earthquake-Induced Uplift on a Rocky Coast. GeoHazards, 2021, 2, 302-320.	1.4	11
53	Growth of cultured mussels (Perna canaliculus Gmelin 1791) at a deep-water chlorophyll maximum layer. Aquaculture Research, 2004, 35, 1253-1260.	1.8	10
54	Risk factors for the conservation of saltmarsh vegetation and blue carbon revealed by earthquake-induced sea-level rise. Science of the Total Environment, 2020, 746, 141241.	8.0	10

DAVID R SCHIEL

#	Article	IF	CITATIONS
55	Coastal tectonics and habitat squeeze: response of a tidal lagoon to co-seismic sea-level change. Natural Hazards, 2020, 103, 3609-3631.	3.4	10
56	Cataclysmic Disturbances to an Intertidal Ecosystem: Loss of Ecological Infrastructure Slows Recovery of Biogenic Habitats and Diversity. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	10
57	Interacting effects of density and temperature on fish growth rates in freshwater protected populations. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211982.	2.6	10
58	Artificial Spawning Habitats Improve Egg Production of a Declining Diadromous Fish, <i>Galaxias maculatus</i> (Jenyns, 1842). Restoration Ecology, 2013, 21, 686-694.	2.9	9
59	Earthquakeâ€induced habitat migration in a riparian spawning fish has implications for conservation management. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 702-712.	2.0	9
60	Understanding the life histories of amphidromous fish by integrating otolithâ€derived growth reconstructions, postâ€larval migrations and reproductive traits. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1391-1402.	2.0	8
61	Enabling nature-based solutions for climate change on a peri-urban sandspit in Christchurch, New Zealand. Regional Environmental Change, 2021, 21, 1.	2.9	8
62	Catch characteristics of commercial gillâ€nets in a nearshore fishery in central New Zealand. New Zealand Journal of Marine and Freshwater Research, 1997, 31, 249-259.	2.0	7
63	Survival strategies in <i>Polysiphonia adamsiae</i> and <i>P. strictissima</i> (Rhodophyta,) Tj ETQq1 1 0.7843 Marine and Freshwater Research, 2007, 41, 325-334.	314 rgBT /Ove 2.0	rlock 10 Tf 5 7
64	Effects of stock origin and environment on growth and reproduction of the green-lipped mussel Perna canaliculus. Aquaculture, 2019, 505, 502-509.	3.5	7
65	Freshwater reserves for fisheries conservation and enhancement of a widespread migratory fish. Journal of Applied Ecology, 2021, 58, 2135-2145.	4.0	7
66	Managing beach access and vehicle impacts following reconfiguration of the landscape by a natural hazard event. Ocean and Coastal Management, 2022, 220, 106101.	4.4	5
67	Coastal biology and the New Zealand Journal of Marine and Freshwater Research, 1967–91. New Zealand Journal of Marine and Freshwater Research, 1991, 25, 415-427.	2.0	4
68	Review of abalone culture and research in New Zealand. Molluscan Research, 1997, 18, 289-298.	0.7	3
69	Multiple Stressors and Disturbances. Ecological Studies, 2009, , 281-294.	1.2	3
70	Biogeographic Comparisons of Pattern and Process on Intertidal Rocky Reefs of New Zealand and South-Eastern Australia. , 2019, , 391-413.		3
71	Patterns Along Environmental Gradients. Ecological Studies, 2009, , 101-112.	1.2	3
79	Whitebait conservation and protected areas at non-tidal rivermouths: integrating biogeography and		

#	Article	IF	CITATIONS
73	Nonselective use of vegetation for spawning by the diadromous fish <scp><i>Galaxias maculatus</i></scp> . Restoration Ecology, 2018, 26, 650-656.	2.9	1
74	Comparing the performance of supervised classification methods on a multispecies fishery of post-larval galaxiids. New Zealand Journal of Marine and Freshwater Research, 0, , 1-12.	2.0	0