Congzhi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3379657/publications.pdf

Version: 2024-02-01

933447 794594 20 493 10 19 citations g-index h-index papers 20 20 20 712 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics, 2016, 72, 150-157.	3.9	181
2	Computer-Aided Diagnosis Based on Quantitative Elastographic Features with Supersonic Shear Wave Imaging. Ultrasound in Medicine and Biology, 2014, 40, 275-286.	1.5	46
3	Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network. Medical Image Analysis, 2021, 70, 102018.	11.6	46
4	Quantification of Elastic Heterogeneity Using Contourlet-Based Texture Analysis in Shear-Wave Elastography for Breast Tumor Classification. Ultrasound in Medicine and Biology, 2015, 41, 588-600.	1.5	44
5	A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 2509-2515.	4.9	38
6	Active Acoustic Metasurface: Complete Elimination of Grating Lobes for High-Quality Ultrasound Focusing and Controllable Steering. Physical Review Applied, 2019, 11, .	3.8	23
7	Computer-assisted assessment of ultrasound real-time elastography: Initial experience in 145 breast lesions. European Journal of Radiology, 2014, 83, e1-e7.	2.6	19
8	3D Acoustic Manipulation of Living Cells and Organisms Based On 2D Array. IEEE Transactions on Biomedical Engineering, 2022, 69, 2342-2352.	4.2	19
9	A PMN-PT Composite-Based Circular Array for Endoscopic Ultrasonic Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2354-2362.	3.0	13
10	Ultrafast Endoscopic Ultrasonography With Circular Array. IEEE Transactions on Medical Imaging, 2020, 39, 2110-2120.	8.9	10
11	Diagnosing Muscle Atrophy by Use of a Comprehensive Method of Assessing the Elastic Properties of Muscle During Passive Stretching. American Journal of Roentgenology, 2020, 214, 862-870.	2.2	8
12	Development of Scalable 2D Plane Array for Transcranial Ultrasonic Neuromodulation on Non-Human Primates: An Ex Vivo Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 361-369.	4.9	8
13	<i>In Vivo</i> Ultrasound Localization Microscopy Imaging of the Kidney's Microvasculature With Block-Matching 3-D Denoising. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 523-533.	3.0	8
14	Development of multi-layer lateral-mode ultrasound needle transducer for brain stimulation in mice. IEEE Transactions on Biomedical Engineering, 2019, 67, 1-1.	4.2	7
15	Quantitative Estimation of Passive Elastic Properties of Individual Skeletal Muscle <i>in Vivo</i> Using Normalized Elastic Modulus-Length Curve. IEEE Transactions on Biomedical Engineering, 2020, 67, 3371-3379.	4.2	5
16	A General Framework for Inverse Problem Solving using Self-Supervised Deep Learning: Validations in Ultrasound and Photoacoustic Image Reconstruction. , 2021, , .		5
17	Transformable Ultrasonic Array Transducer for Multiscale Imaging and Beamforming. IEEE Transactions on Industrial Electronics, 2022, 69, 3078-3087.	7.9	4
18	Ultrasonic characterization of localized passive elastic properties of human pennate muscle with a single-probe setup. Ultrasonics, 2021, 116, 106512.	3.9	4

#	Article	IF	CITATIONS
19	$1.5 ext{-Dimensional}$ Circular Array Transducer for <i>In Vivo</i> Endoscopic Ultrasonography. IEEE Transactions on Biomedical Engineering, 2021, 68, 2930-2939.	4.2	3
20	A Digital Multigate Doppler Method for High Frequency Ultrasound. Sensors, 2014, 14, 13348-13360.	3.8	2