Xiaochun Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3379419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles. Nanoscale, 2022, 14, 4690-4704.	2.8	15
2	Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures. ACS Nano, 2022, 16, 4059-4071.	7.3	12
3	Hollow Pt Nanocage@Mesoporous SiO ₂ Nanoreactors as a Nanozyme for Colorimetric Immunoassays of Viral Diagnosis. ACS Applied Nano Materials, 2022, 5, 1553-1561.	2.4	4
4	Temperature Effect of Plasmonic Circular Dichroism in Dynamic Oligomers of AuNR@Ag Nanorods Driven by Cysteine: The Role of Surface Atom Migration. Advanced Optical Materials, 2021, 9, 2001274.	3.6	8
5	Constructing chiral gold nanorod oligomers using a spatially separated sergeants-and-soldiers effect. Nanoscale, 2021, 13, 9678-9685.	2.8	8
6	Nonlinear Amplification of Chirality in Self-Assembled Plasmonic Nanostructures. ACS Nano, 2021, 15, 5715-5724.	7.3	17
7	Structure of polymer-capped gold nanorods binding to model phospholipid monolayers. JPhys Materials, 2021, 4, 034004.	1.8	2
8	Bottom-Up Synthesis of Helical Plasmonic Nanorods and Their Application in Generating Circularly Polarized Luminescence. ACS Nano, 2021, 15, 15114-15122.	7.3	54
9	4-Aminothiophenol-Modulated Ag Growth on Au Nanoparticles for Detection of Nitrite. ACS Applied Nano Materials, 2021, 4, 11674-11680.	2.4	5
10	The Bio-Persistence of Reversible Inflammatory, Histological Changes and Metabolic Profile Alterations in Rat Livers after Silver/Gold Nanorod Administration. Nanomaterials, 2021, 11, 2656.	1.9	4
11	Plasmonic Nanosensors with Extraordinary Sensitivity to Molecularly Enantioselective Recognition at Nanoscale Interfaces. ACS Nano, 2021, 15, 19535-19545.	7.3	8
12	Corona of Thorns: The Surface Chemistry-Mediated Protein Corona Perturbs the Recognition and Immune Response of Macrophages. ACS Applied Materials & Interfaces, 2020, 12, 1997-2008.	4.0	100
13	Self-Assembly of Chiral Nanoparticles into Semiconductor Helices with Tunable near-Infrared Optical Activity. Chemistry of Materials, 2020, 32, 476-488.	3.2	79
14	Depletion-Mediated Uniform Deposition of Nanorods with Patterned, Multiplexed Assembly. ACS Applied Materials & Interfaces, 2020, 12, 49200-49209.	4.0	9
15	Gold Nanorod-Based Nanoplatform Catalyzes Constant NO Generation and Protects from Cardiovascular Injury. ACS Nano, 2020, 14, 12854-12865.	7.3	30
16	In vivo carcinogenicity study of silver nanoparticles in transgenic rasH2 mice by one single-dose intravenous administration. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	8
17	A Novel Nanoprobe Based on Core–Shell Au@Pt@Mesoporous SiO2 Nanozyme With Enhanced Activity and Stability for Mumps Virus Diagnosis. Frontiers in Chemistry, 2020, 8, 463.	1.8	16
18	Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures. Nanoscale, 2020, 12, 6429-6437.	2.8	17

XIAOCHUN WU

#	Article	IF	CITATIONS
19	In Vivo Metabolic Response upon Exposure to Gold Nanorod Core/Silver Shell Nanostructures: Modulation of Inflammation and Upregulation of Dopamine. International Journal of Molecular Sciences, 2020, 21, 384.	1.8	7
20	Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano–Lipid Interface. ACS Nano, 2019, 13, 8680-8693.	7.3	59
21	Plasmon-Enhanced Oxidase-Like Activity and Cellular Effect of Pd-Coated Gold Nanorods. ACS Applied Materials & Interfaces, 2019, 11, 45416-45426.	4.0	41
22	Aromatic thiol-modulated Ag overgrowth on gold nanoparticles: tracking the thiol's position in the core–shell nanoparticles. Nanoscale, 2019, 11, 17471-17477.	2.8	12
23	Photocontrollable Chiral Switching and Selection in Selfâ€Assembled Plasmonic Nanostructure. Advanced Functional Materials, 2019, 29, 1900587.	7.8	26
24	Plasmonic Circular Dichroism of Gold Nanoparticle Based Nanostructures. Advanced Optical Materials, 2019, 7, 1801590.	3.6	46
25	Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36, 84-97.	2.9	14
26	Thermoâ€triggered Release of CRISPR as9 System by Lipidâ€Encapsulated Gold Nanoparticles for Tumor Therapy. Angewandte Chemie - International Edition, 2018, 57, 1491-1496.	7.2	306
27	Thermoâ€triggered Release of CRISPRâ€Cas9 System by Lipidâ€Encapsulated Gold Nanoparticles for Tumor Therapy. Angewandte Chemie, 2018, 130, 1507-1512.	1.6	17
28	Bio-distribution and bio-availability of silver and gold in rat tissues with silver/gold nanorod administration. RSC Advances, 2018, 8, 12260-12268.	1.7	17
29	Unique role of non-mercapto groups in thiol-pinning-mediated Ag growth on Au nanoparticles. Nano Research, 2018, 11, 614-624.	5.8	13
30	Single-Dosed Genotoxicity Study of Gold Nanorod Core/Silver Shell Nanostructures by <i> Pig-a</i> , Micronucleus, and Comet Assays. Journal of Biomedical Nanotechnology, 2018, 14, 1953-1964.	0.5	12
31	Recognition of chiral zwitterionic interactions at nanoscale interfaces by chiroplasmonic nanosensors. Physical Chemistry Chemical Physics, 2017, 19, 21401-21406.	1.3	9
32	Interference of Steroidogenesis by Gold Nanorod Core/Silver Shell Nanostructures: Implications for Reproductive Toxicity of Silver Nanomaterials. Small, 2017, 13, 1602855.	5.2	32
33	Symmetry control of nanorod superlattice driven by a governing force. Nature Communications, 2017, 8, 1410.	5.8	45
34	Fabricating chiroptical starfruit-like Au nanoparticles via interface modulation of chiral thiols. Nanoscale, 2017, 9, 11093-11102.	2.8	34
35	Heat-enhanced symmetry breaking in dynamic gold nanorod oligomers: the importance of interface control. Nanoscale, 2016, 8, 10030-10034.	2.8	20
36	Enhancing the plasmonic circular dichroism by entrapping chiral molecules at the core–shell interface of rod-shaped Au@Ag nanocrystals. Chemical Communications, 2016, 52, 2059-2062.	2.2	45

XIAOCHUN WU

#	Article	IF	CITATIONS
37	Plasmonic circular dichroism in side-by-side oligomers of gold nanorods: the influence of chiral molecule location and interparticle distance. Physical Chemistry Chemical Physics, 2015, 17, 8187-8193.	1.3	25
38	Plasmonic polymers with strong chiroptical response for sensing molecular chirality. Nanoscale, 2015, 7, 10690-10698.	2.8	19
39	Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen. Journal of the American Chemical Society, 2015, 137, 15882-15891.	6.6	407
40	Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials, 2015, 48, 37-44.	5.7	395
41	Cancer Treatment: Inhibition of Cancer Cell Migration by Gold Nanorods: Molecular Mechanisms and Implications for Cancer Therapy (Adv. Funct. Mater. 44/2014). Advanced Functional Materials, 2014, 24, 7064-7064.	7.8	Ο
42	Novel Insights into Combating Cancer Chemotherapy Resistance Using a Plasmonic Nanocarrier: Enhancing Drug Sensitiveness and Accumulation Simultaneously with Localized Mild Photothermal Stimulus of Femtosecond Pulsed Laser. Advanced Functional Materials, 2014, 24, 4229-4239.	7.8	130
43	Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers. Nano Research, 2014, 7, 1699-1705.	5.8	40
44	Localized Electric Field of Plasmonic Nanoplatform Enhanced Photodynamic Tumor Therapy. ACS Nano, 2014, 8, 11529-11542.	7.3	220
45	<scp>l</scp> -Cysteine-induced chiroptical activity in assemblies of gold nanorods and its use in ultrasensitive detection of copper ions. RSC Advances, 2014, 4, 45159-45162.	1.7	11
46	Using gold nanorods core/silver shell nanostructures as model material to probe biodistribution and toxic effects of silver nanoparticles in mice. Nanotoxicology, 2014, 8, 686-696.	1.6	38
47	Inhibition of Cancer Cell Migration by Gold Nanorods: Molecular Mechanisms and Implications for Cancer Therapy. Advanced Functional Materials, 2014, 24, 6922-6932.	7.8	69
48	Experimental Observation of Giant Chiroptical Amplification of Small Chiral Molecules by Gold Nanosphere Clusters. Journal of Physical Chemistry C, 2014, 118, 9690-9695.	1.5	77
49	Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale, 2013, 5, 8384.	2.8	141
50	Revealing silver cytotoxicity using Au nanorods/Ag shell nanostructures: disrupting cell membrane and causing apoptosis through oxidative damage. RSC Advances, 2013, 3, 2296.	1.7	63
51	Revealing the Binding Structure of the Protein Corona on Gold Nanorods Using Synchrotron Radiation-Based Techniques: Understanding the Reduced Damage in Cell Membranes. Journal of the American Chemical Society, 2013, 135, 17359-17368.	6.6	239
52	Controllable Two-Stage Droplet Evaporation Method and Its Nanoparticle Self-Assembly Mechanism. Langmuir, 2013, 29, 6232-6241.	1.6	81
53	Mesoporous Silicaâ€Coated Gold Nanorods as a Lightâ€Mediated Multifunctional Theranostic Platform for Cancer Treatment. Advanced Materials, 2012, 24, 1418-1423.	11.1	881
54	Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy. Nano Letters, 2011, 11, 772-780.	4.5	475

XIAOCHUN WU

#	Article	IF	CITATIONS
55	Self-Assembly of Gold Nanorods into Symmetric Superlattices Directed by OH-Terminated Hexa(ethylene glycol) Alkanethiol. Langmuir, 2011, 27, 11394-11400.	1.6	75
56	Chiral assembly of gold nanorods with collective plasmonic circular dichroism response. Soft Matter, 2011, 7, 8370.	1.2	84
57	Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials, 2011, 32, 1139-1147.	5.7	531
58	Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials, 2011, 32, 1611-1618.	5.7	397
59	Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Analytical and Bioanalytical Chemistry, 2010, 396, 1105-1114.	1.9	108
60	Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 2010, 31, 7606-7619.	5.7	613
61	Wellâ€Controlled Synthesis of Au@Pt Nanostructures by Goldâ€Nanorodâ€Seeded Growth. Chemistry - A European Journal, 2008, 14, 9764-9771.	1.7	101
62	Tuning the Morphology of Gold Nanocrystals by Switching the Growth of {110} Facets from Restriction to Preference. Journal of Physical Chemistry C, 2008, 112, 3203-3208.	1.5	91