## Marcelo O Orlandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3379322/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Role of Hierarchical Morphologies in the Superior Gas Sensing Performance of CuOâ€Based<br>Chemiresistors. Advanced Functional Materials, 2013, 23, 1759-1766.                                  | 14.9 | 255       |
| 2  | Effect of Different Solvent Ratios (Water/Ethylene Glycol) on the Growth Process of<br>CaMoO <sub>4</sub> Crystals and Their Optical Properties. Crystal Growth and Design, 2010, 10,<br>4752-4768. | 3.0  | 204       |
| 3  | Electronic structure, growth mechanism and photoluminescence of CaWO <sub>4</sub> crystals.<br>CrystEngComm, 2012, 14, 853-868.                                                                     | 2.6  | 200       |
| 4  | Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application. Sensors and Actuators B: Chemical, 2018, 257, 906-915.                                                           | 7.8  | 197       |
| 5  | Hydrothermal Microwave: A New Route to Obtain Photoluminescent Crystalline BaTiO <sub>3</sub><br>Nanoparticles. Chemistry of Materials, 2008, 20, 5381-5387.                                        | 6.7  | 166       |
| 6  | Role of oxygen at the grain boundary of metal oxide varistors: A potential barrier formation mechanism. Applied Physics Letters, 2001, 79, 48-50.                                                   | 3.3  | 163       |
| 7  | Comparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferents. Sensors and Actuators B: Chemical, 2015, 208, 122-127.                                          | 7.8  | 124       |
| 8  | Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly. CrystEngComm, 2010, 12, 1696.                                               | 2.6  | 109       |
| 9  | Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals.<br>Scientific Reports, 2013, 3, 1676.                                                             | 3.3  | 103       |
| 10 | ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ionics, 2010, 181, 775-780.                                           | 2.7  | 92        |
| 11 | Gas sensor properties of Ag- and Pd-decorated SnO micro-disks to NO2, H2 and CO: Catalyst enhanced sensor response and selectivity. Sensors and Actuators B: Chemical, 2017, 239, 253-261.          | 7.8  | 92        |
| 12 | Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution. Advanced Powder Technology, 2013, 24, 344-353.                  | 4.1  | 89        |
| 13 | Schottky-type grain boundaries in CCTO ceramics. Solid State Communications, 2011, 151, 1377-1381.                                                                                                  | 1.9  | 79        |
| 14 | Growth of SnO Nanobelts and Dendrites by a Self-Catalytic VLS Process. Journal of Physical Chemistry B, 2006, 110, 6621-6625.                                                                       | 2.6  | 77        |
| 15 | Growth mechanism of octahedron-like BaMoO4 microcrystals processed in microwave-hydrothermal: Experimental observations and computational modeling. Particuology, 2009, 7, 353-362.                 | 3.6  | 76        |
| 16 | A Joint Experimental and Theoretical Study on the Nanomorphology of CaWO <sub>4</sub> Crystals.<br>Journal of Physical Chemistry C, 2011, 115, 20113-20119.                                         | 3.1  | 73        |
| 17 | High gas sensor performance of WO3 nanofibers prepared by electrospinning. Journal of Alloys and Compounds, 2021, 864, 158745.                                                                      | 5.5  | 64        |
| 18 | Structural evolution, growth mechanism and photoluminescence properties of CuWO4 nanocrystals.<br>Ultrasonics Sonochemistry, 2017, 38, 256-270.                                                     | 8.2  | 60        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior. Applied Surface Science, 2016, 389, 1137-1147.                                                                                               | 6.1 | 50        |
| 20 | SnO2 nanocrystals synthesized by microwave-assisted hydrothermal method: towards a relationship between structural and optical properties. Journal of Nanoparticle Research, 2012, 14, 1.                                                 | 1.9 | 49        |
| 21 | Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.                                                                                                                                                     | 1.8 | 49        |
| 22 | Investigation of electronic and chemical sensitization effects promoted by Pt and Pd nanoparticles on single-crystalline SnO nanobelt-based gas sensors. Sensors and Actuators B: Chemical, 2019, 301, 127055.                            | 7.8 | 48        |
| 23 | Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceramics International, 2015, 41, 2884-2891.                                                                                                                             | 4.8 | 47        |
| 24 | Carbon Fiber Reinforced Polymer and Epoxy Adhesive Tensile Test Failure Analysis Using Scanning<br>Electron Microscopy. Materials Research, 2017, 20, 951-961.                                                                            | 1.3 | 47        |
| 25 | Ionic conductivity of Bi4Ti0.2V1.8O10.7 polycrystalline ceramics obtained by the polymeric precursor route. Materials Letters, 2003, 57, 2540-2544.                                                                                       | 2.6 | 41        |
| 26 | Importance of oxygen atmosphere to recover the ZnO-based varistors properties. Journal of Materials Science, 2006, 41, 6221-6227.                                                                                                         | 3.7 | 41        |
| 27 | Role of oxygen on the phase stability and microstructure evolution of CaCu3Ti4O12 ceramics. Journal of the European Ceramic Society, 2017, 37, 129-136.                                                                                   | 5.7 | 40        |
| 28 | Giant Chemo-Resistance of SnO disk-like structures. Sensors and Actuators B: Chemical, 2013, 186, 103-108.                                                                                                                                | 7.8 | 34        |
| 29 | Electrostatic force microscopy as a tool to estimate the number of active potential barriers in dense non-Ohmic polycrystalline SnO2 devices. Applied Physics Letters, 2006, 89, 152102.                                                  | 3.3 | 33        |
| 30 | Visible light-driven photoelectrocatalytic degradation of acid yellow 17 using Sn3O4 flower-like thin<br>films supported on Ti substrate (Sn3O4/TiO2/Ti). Journal of Photochemistry and Photobiology A:<br>Chemistry, 2019, 376, 196-205. | 3.9 | 31        |
| 31 | Multi-functional properties of CaCu3Ti4O12 thin films. Journal of Applied Physics, 2012, 112, 054512.                                                                                                                                     | 2.5 | 27        |
| 32 | Nonohmic behavior of SnO2-MnO polycrystalline ceramics. II. Analysis of admittance and dielectric spectroscopy. Journal of Applied Physics, 2004, 96, 3811-3817.                                                                          | 2.5 | 26        |
| 33 | Morphological Evolution of Tin Oxide Nanobelts after Phase Transition. Crystal Growth and Design, 2008, 8, 1067-1072.                                                                                                                     | 3.0 | 26        |
| 34 | Electrical and Optical Properties of Conductive and Transparent ITO@PMMA Nanocomposites. Journal of Physical Chemistry C, 2012, 116, 12946-12952.                                                                                         | 3.1 | 26        |
| 35 | Tin-doped indium oxide nanobelts grown by carbothermal reduction method. Applied Physics A:<br>Materials Science and Processing, 2005, 80, 23-25.                                                                                         | 2.3 | 25        |
| 36 | Insight into Copperâ€Based Catalysts: Microwaveâ€Assisted Morphosynthesis, Inâ€Situ Reduction Studies, and Dehydrogenation of Ethanol. ChemCatChem, 2011, 3, 839-843.                                                                     | 3.7 | 25        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cellulosic material obtained from Antarctic algae biomass. Cellulose, 2020, 27, 113-126.                                                                                                                                                   | 4.9 | 25        |
| 38 | The Influence of Excess Precipitate on the Non-Ohmic Properties of SnO2-Based Varistors. , 2003, 10, 63-68.                                                                                                                                |     | 24        |
| 39 | Controlled Synthesis of Layered Sn <sub>3</sub> O <sub>4</sub> Nanobelts by<br>Carbothermal Reduction Method and Their Gas Sensor Properties. Journal of Nanoscience and<br>Nanotechnology, 2014, 14, 6662-6668.                           | 0.9 | 24        |
| 40 | Monitoring a CuO gas sensor at work: an advanced in situ X-ray absorption spectroscopy study.<br>Physical Chemistry Chemical Physics, 2015, 17, 18761-18767.                                                                               | 2.8 | 24        |
| 41 | Nonohmic behavior of SnO2-MnO polycrystalline ceramics. I. Correlations between microstructural morphology and nonohmic features. Journal of Applied Physics, 2004, 96, 2693-2700.                                                         | 2.5 | 22        |
| 42 | Probing the effects of oxygen-related defects on the optical and luminescence properties in CaCu3Ti4O12 ceramics. Journal of the European Ceramic Society, 2018, 38, 5002-5006.                                                            | 5.7 | 20        |
| 43 | Grain-Boundary Resistance and Nonlinear Coefficient Correlation for SnO2-Based Varistors.<br>Materials Research, 2016, 19, 1286-1291.                                                                                                      | 1.3 | 18        |
| 44 | Layered α-MoO <sub>3</sub> nanoplates for gas sensing applications. CrystEngComm, 2020, 22, 4640-4649.                                                                                                                                     | 2.6 | 18        |
| 45 | Morphological modifications and surface amorphization in ZnO sonochemically treated nanoparticles. Ultrasonics Sonochemistry, 2013, 20, 799-804.                                                                                           | 8.2 | 17        |
| 46 | Controlling the breakdown electric field in SnO2 based varistors by the insertion of SnO2 nanobelts.<br>Journal of the European Ceramic Society, 2017, 37, 1535-1540.                                                                      | 5.7 | 17        |
| 47 | Influence of processing parameters on nanomaterials synthesis efficiency by a carbothermal reduction process. Journal of Nanoparticle Research, 2011, 13, 2081-2088.                                                                       | 1.9 | 16        |
| 48 | Photoelectrocatalytic oxidation of hair dye basic red 51 at W/WO3/TiO2 bicomposite photoanode<br>activated by ultraviolet and visible radiation. Journal of Environmental Chemical Engineering, 2013, 1,<br>194-199.                       | 6.7 | 16        |
| 49 | Tungsten oxide ion gel-gated transistors: how structural and electrochemical properties affect the doping mechanism. Journal of Materials Chemistry C, 2018, 6, 1980-1987.                                                                 | 5.5 | 16        |
| 50 | Structure of the Electrical Double Layer at the Interface between an Ionic Liquid and Tungsten Oxide in Ion-Gated Transistors. Journal of Physical Chemistry Letters, 2020, 11, 3257-3262.                                                 | 4.6 | 16        |
| 51 | Feasible and Clean Solid-Phase Synthesis of LiNbO <sub>3</sub> by Microwave-Induced Combustion and<br>Its Application as Catalyst for Low-Temperature Aniline Oxidation. ACS Sustainable Chemistry and<br>Engineering, 2018, 6, 1680-1691. | 6.7 | 15        |
| 52 | Accelerated microwave-assisted hydrothermal/solvothermal processing: Fundamentals, morphologies, and applications. Journal of Electroceramics, 2018, 40, 271-292.                                                                          | 2.0 | 15        |
| 53 | A Gas Sensor Based on a Single SnO Micro-Disk. Sensors, 2018, 18, 3229.                                                                                                                                                                    | 3.8 | 15        |
| 54 | Study of intense photoluminescence from monodispersed β-Ga2O3 ellipsoidal structures. Ceramics International, 2019, 45, 5023-5029.                                                                                                         | 4.8 | 15        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Tin oxide materials. , 2020, , 1-9.                                                                                                                                                                                                      |     | 15        |
| 56 | Superior performance of rGO-tin oxide nanocomposite for selective reduction of CO2 to methanol.<br>Journal of CO2 Utilization, 2021, 46, 101460.                                                                                         | 6.8 | 15        |
| 57 | Gas sensing and conductivity relationship on nanoporous thin films: A CaCu3Ti4O12 case study. Thin Solid Films, 2016, 604, 69-73.                                                                                                        | 1.8 | 14        |
| 58 | High-performance and low-voltage SnO2-based varistors. Ceramics International, 2017, 43, 13759-13764.                                                                                                                                    | 4.8 | 14        |
| 59 | Tungsten oxide ion-gated phototransistors using ionic liquid and aqueous gating media. Journal<br>Physics D: Applied Physics, 2019, 52, 305102.                                                                                          | 2.8 | 13        |
| 60 | The effect of TiO <sub>2</sub> on the microstructural and electrical properties of low voltage<br>varistor based on (Sn,Ti)O <sub>2</sub> ceramics. Physica Status Solidi (A) Applications and Materials<br>Science, 2010, 207, 457-461. | 1.8 | 12        |
| 61 | Facile preparation of a novel biomass-derived H3PO4 and Mn(NOâ, <i>f</i> )â,, activated carbon from citrus bergamia peels for high-performance supercapacitors. Materials Today Communications, 2021, 26, 101779.                        | 1.9 | 12        |
| 62 | Cerâmicas eletrônicas à base de SnO2 e TiO2. Ceramica, 2001, 47, 136-143.                                                                                                                                                                | 0.8 | 11        |
| 63 | Microstructure and electrical properties of (Ta, Co, Pr) doped TiO2 based electroceramics. Journal of Materials Science: Materials in Electronics, 2010, 21, 246-251.                                                                    | 2.2 | 11        |
| 64 | Heating Method Effect on SnO Micro-Disks as NO2 Gas Sensor. Frontiers in Materials, 2019, 6, .                                                                                                                                           | 2.4 | 11        |
| 65 | Tunable graphene oxide inter-sheet distance to obtain graphene oxide–silver nanoparticle hybrids.<br>New Journal of Chemistry, 2019, 43, 1285-1290.                                                                                      | 2.8 | 11        |
| 66 | Sonochemical Synthesis and Magnetism in Co-doped ZnO Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2515-2519.                                                                                               | 1.8 | 10        |
| 67 | Ultrafast Growth of h-MoO3 Microrods and Its Acetone Sensing Performance. Surfaces, 2021, 4, 9-16.                                                                                                                                       | 2.3 | 9         |
| 68 | Nonohmic behavior of SnO2.MnO2-based ceramics. Materials Research, 2003, 6, 279-283.                                                                                                                                                     | 1.3 | 8         |
| 69 | Qualitative evaluation of active potential barriers in SnO2-based polycrystalline devices by electrostatic force microscopy. Applied Physics A: Materials Science and Processing, 2007, 87, 793-796.                                     | 2.3 | 7         |
| 70 | Influence of Synthesis Route on the Radiation Sensing Properties of ZnO Nanostructures. Journal of Nanomaterials, 2016, 2016, 1-9.                                                                                                       | 2.7 | 7         |
| 71 | Sn3O4 exfoliation process investigated by density functional theory and modern scotch-tape experiment. Computational Materials Science, 2019, 170, 109160.                                                                               | 3.0 | 7         |
| 72 | Carbothermal Reduction Synthesis: An Alternative Approach to Obtain Single-Crystalline Metal Oxide                                                                                                                                       |     | 7         |

Nanostructures. , 2017, , 43-67.

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Carbon-coated SnO2 nanobelts and nanoparticles by single catalytic step. Journal of Nanoparticle<br>Research, 2009, 11, 955-963.                                                                                                                                     | 1.9 | 6         |
| 74 | Effect of controlled conductivity on thermal sensing property of 0–3 pyroelectric composite. Smart Materials and Structures, 2013, 22, 025015.                                                                                                                       | 3.5 | 6         |
| 75 | The role of surface stoichiometry in NO <sub>2</sub> gas sensing using single and multiple nanobelts of tin oxide. Physical Chemistry Chemical Physics, 2021, 23, 9733-9742.                                                                                         | 2.8 | 6         |
| 76 | Exploring ZnO nanostructures with reduced graphene oxide in layer-by-layer films as supercapacitor electrodes for energy storage. Journal of Materials Science, 2022, 57, 7023-7034.                                                                                 | 3.7 | 6         |
| 77 | (Ta, Cr)-doped {T}{i}O2 electroceramic systems. Journal of Materials Science: Materials in Electronics, 2006, 17, 79-84.                                                                                                                                             | 2.2 | 5         |
| 78 | Dependence of annealing time on structural and morphological properties of Ca(Zr0.05Ti0.95)O3 thin films. Journal of Alloys and Compounds, 2008, 453, 386-391.                                                                                                       | 5.5 | 5         |
| 79 | Influence of thermal annealing treatment in oxygen atmosphere on grain boundary chemistry and<br>nonâ€ohmic properties of SnO <sub>2</sub> ·MnO polycrystalline semiconductors. Physica Status Solidi<br>(A) Applications and Materials Science, 2008, 205, 383-388. | 1.8 | 4         |
| 80 | SnO2 nanoparticles functionalized in amorphous silica and glass. Powder Technology, 2009, 195, 91-95.                                                                                                                                                                | 4.2 | 4         |
| 81 | Chemical composition and morphology study of bovine enamel submitted to different sterilization methods. Clinical Oral Investigations, 2018, 22, 733-744.                                                                                                            | 3.0 | 4         |
| 82 | Coalescence growth mechanism of inserted tin dioxide belts in polycrystalline SnO2-based ceramics.<br>Materials Characterization, 2018, 142, 289-294.                                                                                                                | 4.4 | 4         |
| 83 | Temperature dependence of electron properties of Sn doped nanobelts. Physica B: Condensed Matter, 2007, 400, 243-247.                                                                                                                                                | 2.7 | 3         |
| 84 | Novel Aspects of the Purpose-Built Materials Strategy: Evidence of Topographic Template Effect and<br>Oriented Attachment Growth Mechanism. Journal of Nanoscience and Nanotechnology, 2008, 8,<br>3447-3453.                                                        | 0.9 | 3         |
| 85 | Flexible composite via rapid titania coating by microwave-assisted hydrothermal synthesis. Bulletin of<br>Materials Science, 2017, 40, 499-504.                                                                                                                      | 1.7 | 3         |
| 86 | Influence of pH in Obtaining Indium Tin Oxide Nanoparticles by Microwave Assisted Solvothermal<br>Method. Materials Research, 2018, 21, .                                                                                                                            | 1.3 | 3         |
| 87 | Varistor technology based on SnO2. , 2020, , 321-343.                                                                                                                                                                                                                |     | 3         |
| 88 | Supercapacitor Based on Nanostructured Multilayer Films Consisting of Polyelectrolyte/Graphene<br>Oxideâ€MnO <sub>2</sub> â€ZnO for Energy Storage Applications. Physica Status Solidi (A) Applications<br>and Materials Science, 2022, 219, .                       | 1.8 | 3         |
| 89 | Damage Detection and Quantification Using Thin Film of ITO Nanocomposites. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 207-213.                                                                                                        | 0.5 | 2         |
| 90 | Methods for characterization and evaluation of chemoresistive nanosensors. , 2020, , 63-83.                                                                                                                                                                          |     | 2         |

Methods for characterization and evaluation of chemoresistive nanosensors. , 2020, , 63-83. 90

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Structural, thermal, vibrational, and optical characterization of Sn–S–Se dichalcogenide system synthesized by high-energy ball milling. Journal of Physics and Chemistry of Solids, 2021, 157, 110203.                  | 4.0 | 2         |
| 92  | Real-Time Monitoring of Electrochromic Memory Loss of Layered α-MoO3 Nanoplates. Journal of the Electrochemical Society, 2020, 167, 166509.                                                                              | 2.9 | 2         |
| 93  | Detection of H2 facilitated by ionic liquid gating of tungsten oxide films. Journal of Vacuum Science<br>and Technology A: Vacuum, Surfaces and Films, 2022, 40, 013202.                                                 | 2.1 | 2         |
| 94  | Layer-by-Layer Films with CoFe <sub>2</sub> O <sub>4</sub> Nanocrystals and Graphene Oxide as a Sensitive Interface in Capacitive Field-Effect Devices. ACS Applied Nano Materials, 0, , .                               | 5.0 | 2         |
| 95  | Efeito do Pr2O3 nas propriedades elétricas de varistores à base de SnO2. Ceramica, 2003, 49, 232-236.                                                                                                                    | 0.8 | 1         |
| 96  | Study ITO@PMMA Composites by Transmission Electron Microscopy. Materials Research Society Symposia Proceedings, 2011, 1312, 1.                                                                                           | 0.1 | 1         |
| 97  | Ab initio investigation of the role of charge transfer in the adsorption properties of<br>H2,ÂN2,ÂO2,CO,NO,CO2,ÂNO2 , and CH4 on the van der Waals layered Sn3O4 semiconductor. Physical<br>Review Materials, 2020, 4, . | 2.4 | 1         |
| 98  | In-situ sensor response of copper oxide urchin-like structures. , 2016, , .                                                                                                                                              |     | 0         |
| 99  | Nanofitas de óxido de estanho: controle do estado de oxidação pela atmosfera de sÃntese. Ceramica,<br>2004, 50, 58-61.                                                                                                   | 0.8 | 0         |
| 100 | Influence of the Relative Humidity to the Damage Detection Effectiveness of an ITO/PMMA<br>Nanocomposite Film Sensor. , 0, , .                                                                                           |     | 0         |
| 101 | (Invited) Visible Light Driven Photoelectrocatalytic Degradation of Acid Yellow 17 Dye Using Thin Film<br>Sn3O4 Flowers-like Nanostructurred Supporting Onto Ti. ECS Meeting Abstracts, 2018, , .                        | 0.0 | 0         |
| 102 | Emerging Chemical Sensing Technologies: Recent Advances and Future Trends. Surfaces, 2022, 5, 318-320.                                                                                                                   | 2.3 | 0         |