
Diego Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3378536/publications.pdf Version: 2024-02-01

DIECO ROMERO

#	Article	IF	CITATIONS
1	Transparent, UV-blocking, and high barrier cellulose-based bioplastics with naringin as active food packaging materials. International Journal of Biological Macromolecules, 2022, 209, 1985-1994.	7.5	51
2	Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon. Nature Microbiology, 2022, 7, 1001-1015.	13.3	30
3	A Noninvasive Method for Time-Lapse Imaging of Microbial Interactions and Colony Dynamics. Microbiology Spectrum, 2022, 10, .	3.0	4
4	Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Computational and Structural Biotechnology Journal, 2021, 19, 2796-2805.	4.1	10
5	Effectors with chitinase activity (EWCAs), a family of conserved, secreted fungal chitinases that suppress chitin-triggered immunity. Plant Cell, 2021, 33, 1319-1340.	6.6	36
6	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	8.0	81
7	A Hybrid Genome Assembly Resource for <i>Podosphaera xanthii</i> , the Main Causal Agent of Powdery Mildew Disease in Cucurbits. Molecular Plant-Microbe Interactions, 2021, 34, 319-324.	2.6	14
8	Sporulation is dispensable for the vegetableâ€associated life cycle of the human pathogen <i>BacillusÂcereus</i> . Microbial Biotechnology, 2021, 14, 1550-1565.	4.2	13
9	Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence. Cell Reports, 2021, 36, 109449.	6.4	28
10	Chemical Proportionality within Molecular Networks. Analytical Chemistry, 2021, 93, 12833-12839.	6.5	22
11	Chitin Deacetylase, a Novel Target for the Design of Agricultural Fungicides. Journal of Fungi (Basel,) Tj ETQq1 1	0.784314	rgBT /Overloo
12	More than words: the chemistry behind the interactions in the plant holobiont. Environmental Microbiology, 2020, 22, 4532-4544.	3.8	33
13	Multifunctional Amyloids in the Biology of Gram-Positive Bacteria. Microorganisms, 2020, 8, 2020.	3.6	11
14	The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within <i>Bacillus subtilis</i> biofilms. Science Signaling, 2020, 13, .	3.6	39
15	Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nature Communications, 2020, 11, 1859.	12.8	59
16	Two genomic regions encoding exopolysaccharide production systems have complementary functions in B. cereus multicellularity and host interaction. Scientific Reports, 2020, 10, 1000.	3.3	28
17	Biofilm formation displays intrinsic offensive and defensive features of Bacillus cereus. Npj Biofilms and Microbiomes, 2020, 6, 3.	6.4	34
18	Whole Genome Sequencing and Root Colonization Studies Reveal Novel Insights in the Biocontrol Potential and Growth Promotion by Bacillus subtilis MBI 600 on Cucumber. Frontiers in Microbiology, 2020, 11, 600393.	3.5	41

DIEGO ROMERO

#	Article	IF	CITATIONS
19	Understanding Bacterial Physiology for Improving Full Fitness. Progress in Biological Control, 2020, , 47-60.	0.5	1
20	Molecular architecture of bacterial amyloids in <i>Bacillus</i> biofilms. FASEB Journal, 2019, 33, 12146-12163.	0.5	40
21	The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nature Communications, 2019, 10, 1919.	12.8	102
22	Aflatoxin degradation by Bacillus subtilis UTB1 is based on production of an oxidoreductase involved in bacilysin biosynthesis. Food Control, 2018, 94, 48-55.	5.5	44
23	The race for antimicrobials in the multidrug resistance era. Microbial Biotechnology, 2018, 11, 976-978.	4.2	3
24	The Functional Characterization of <i>Podosphaera xanthii</i> Candidate Effector Genes Reveals Novel Target Functions for Fungal Pathogenicity. Molecular Plant-Microbe Interactions, 2018, 31, 914-931.	2.6	29
25	Beyond the expected: the structural and functional diversity of bacterial amyloids. Critical Reviews in Microbiology, 2018, 44, 653-666.	6.1	14
26	Transformation by growth onto agroâ€infiltrated tissues (TGAT), a simple and efficient alternative for transient transformation of the cucurbit powdery mildew pathogen <i>Podosphaera xanthii</i> . Molecular Plant Pathology, 2018, 19, 2502-2515.	4.2	11
27	Functional Amyloids in Health and Disease. Journal of Molecular Biology, 2018, 430, 3629-3630.	4.2	10
28	Analysis of β-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance. Scientific Reports, 2018, 8, 7161.	3.3	51
29	Transformation of the cucurbit powdery mildew pathogen <i>Podosphaera xanthii</i> by <i>Agrobacterium tumefaciens</i> . New Phytologist, 2017, 213, 1961-1973.	7.3	47
30	Unicellular but not asocial. Life in community of a bacterium. International Microbiology, 2016, 19, 81-90.	2.4	3
31	Comparative Genomics Within the <i>Bacillus</i> Genus Reveal the Singularities of Two Robust <i>Bacillus amyloliquefaciens</i> Biocontrol Strains. Molecular Plant-Microbe Interactions, 2015, 28, 1102-1116.	2.6	31
32	Transient transformation of Podosphaera xanthii by electroporation of conidia. BMC Microbiology, 2015, 15, 20.	3.3	16
33	The Podosphaera xanthii haustorium, the fungal Trojan horse of cucurbit-powdery mildew interactions. Fungal Genetics and Biology, 2014, 71, 21-31.	2.1	23
34	Functional Analysis of the Accessory Protein TapA in Bacillus subtilis Amyloid Fiber Assembly. Journal of Bacteriology, 2014, 196, 1505-1513.	2.2	79
35	Surfactin triggers biofilm formation of <i><scp>B</scp>acillus subtilis</i> in melon phylloplane and contributes to the biocontrol activity. Environmental Microbiology, 2014, 16, 2196-2211.	3.8	176
36	A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms. Frontiers in Microbiology, 2014, 5, 745.	3.5	67

DIEGO ROMERO

#	Article	IF	CITATIONS
37	Functional amyloids in bacteria. International Microbiology, 2014, 17, 65-73.	2.4	50
38	Bacterial determinants of the social behavior of Bacillus subtilis. Research in Microbiology, 2013, 164, 788-798.	2.1	25
39	Biofilm Inhibitors that Target Amyloid Proteins. Chemistry and Biology, 2013, 20, 102-110.	6.0	66
40	Isolation, Characterization, and Aggregation of a Structured Bacterial Matrix Precursor. Journal of Biological Chemistry, 2013, 288, 17559-17568.	3.4	59
41	Evaluation of the effectiveness of biocontrol bacteria against avocado white root rot occurring under commercial greenhouse plant production conditions. Biological Control, 2013, 67, 94-100.	3.0	24
42	The antagonistic strain <i><scp>B</scp>acillus subtilis</i> â€ <scp>UMAF</scp> 6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate―and salicylic acidâ€dependent defence responses. Microbial Biotechnology, 2013, 6, 264-274.	4.2	174
43	Calcium Causes Multimerization of the Large Adhesin LapF and Modulates Biofilm Formation by Pseudomonas putida. Journal of Bacteriology, 2012, 194, 6782-6789.	2.2	38
44	Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant and Soil, 2012, 358, 201-212.	3.7	58
45	The Iturin-like Lipopeptides Are Essential Components in the Biological Control Arsenal of <i>Bacillus subtilis</i> Against Bacterial Diseases of Cucurbits. Molecular Plant-Microbe Interactions, 2011, 24, 1540-1552.	2.6	132
46	Will biofilm disassembly agents make it to market?. Trends in Microbiology, 2011, 19, 304-306.	7.7	49
47	An accessory protein required for anchoring and assembly of amyloid fibres in <i>B. subtilis</i> biofilms. Molecular Microbiology, 2011, 80, 1155-1168.	2.5	190
48	Antibiotics as Signal Molecules. Chemical Reviews, 2011, 111, 5492-5505.	47.7	348
49	Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 2011, 22, 187-193.	6.6	477
50	Biological Control of Phytopathogenic Fungi by Aerobic Endospore-Formers. Soil Biology, 2011, , 157-180.	0.8	6
51	Sensitivities to DMI fungicides in populations of <i>Podosphaera fusca</i> in south central Spain. Pest Management Science, 2010, 66, 801-808.	3.4	30
52	<scp>d</scp> -Amino Acids Trigger Biofilm Disassembly. Science, 2010, 328, 627-629.	12.6	736
53	Amyloid fibers provide structural integrity to <i>Bacillus subtilis</i> biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2230-2234.	7.1	695
54	The powdery mildew fungus <i>Podosphaera fusca</i> (synonym <i>Podosphaera xanthii</i>), a constant threat to cucurbits. Molecular Plant Pathology, 2009, 10, 153-160.	4.2	178

DIEGO ROMERO

#	Article	IF	CITATIONS
55	Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon–powdery mildew (Podosphaera fusca) interactions. Journal of Plant Physiology, 2008, 165, 1895-1905.	3.5	49
56	A Nonribosomal Peptide Synthetase Gene (mgoA) of Pseudomonas syringae pv. syringae Is Involved in Mangotoxin Biosynthesis and Is Required for Full Virulence. Molecular Plant-Microbe Interactions, 2007, 20, 500-509.	2.6	40
57	The Iturin and Fengycin Families of Lipopeptides Are Key Factors in Antagonism of Bacillus subtilis Toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 2007, 20, 430-440.	2.6	553
58	Effect of lipopeptides of antagonistic strains ofBacillus subtilison the morphology and ultrastructure of the cucurbit fungal pathogenPodosphaera fusca. Journal of Applied Microbiology, 2007, 103, 969-976.	3.1	110
59	Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology, 2007, 103, 1950-1959.	3.1	240
60	Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouseâ€grown melon. Plant Pathology, 2007, 56, 976-986.	2.4	81
61	Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation. Journal of Microbiological Methods, 2006, 66, 556-559.	1.6	34
62	Long-term Preservation of Podosphaera fusca Using Silica Gel. Journal of Phytopathology, 2006, 154, 190-192.	1.0	35
63	Occurrence and distribution of resistance to Qol fungicides in populations of Podosphaera fusca in south central Spain. European Journal of Plant Pathology, 2006, 115, 215-222.	1.7	70
64	Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Applied Microbiology and Biotechnology, 2004, 64, 263-269.	3.6	109
65	Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycological Research, 2003, 107, 64-71.	2.5	50