List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3378475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional Ln–MOF Luminescent Probe for Efficient Sensing of Fe ³⁺ , Ce ³⁺ , and Acetone. ACS Applied Materials & Interfaces, 2018, 10, 23976-23986.	4.0	307
2	Multinuclear Copper Triethanolamine Complexes as Selective Catalysts for the Peroxidative Oxidation of Alkanes under Mild Conditions. Angewandte Chemie - International Edition, 2005, 44, 4345-4349.	7.2	248
3	Bimetallic metal–organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications. Coordination Chemistry Reviews, 2022, 451, 214264.	9.5	203
4	Multicopper complexes and coordination polymers for mild oxidative functionalization of alkanes. Coordination Chemistry Reviews, 2012, 256, 2741-2759.	9.5	191
5	A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chemical Communications, 2015, 51, 5036-5039.	2.2	191
6	Supramolecular Assemblies of Trinuclear Triangular Copper(II) Secondary Building Units through Hydrogen Bonds. Generation of Different Metalâ^'Organic Frameworks, Valuable Catalysts for Peroxidative Oxidation of Alkanes. Inorganic Chemistry, 2007, 46, 221-230.	1.9	188
7	Mild Peroxidative Oxidation of Cyclohexane Catalyzed by Mono-, Di-, Tri-, Tetra- and Polynuclear Copper Triethanolamine Complexes. Advanced Synthesis and Catalysis, 2006, 348, 159-174.	2.1	164
8	Hexamethylenetetramine: An old new building block for design of coordination polymers. Coordination Chemistry Reviews, 2011, 255, 1603-1622.	9.5	157
9	Pyrazinecarboxylic acid and analogs: Highly efficient co-catalysts in the metal-complex-catalyzed oxidation of organic compounds. Coordination Chemistry Reviews, 2013, 257, 732-754.	9.5	138
10	Remarkably fast oxidation of alkanes by hydrogen peroxide catalyzed by a tetracopper(II) triethanolaminate complex: Promoting effects of acid co-catalysts and water, kinetic and mechanistic features. Journal of Catalysis, 2009, 268, 26-38.	3.1	131
11	Cobalt(II) Coordination Polymers Assembled from Unexplored Pyridine-Carboxylic Acids: Structural Diversity and Catalytic Oxidation of Alcohols. Inorganic Chemistry, 2019, 58, 5875-5885.	1.9	120
12	An Aqua-Soluble Copper(II)â^'Sodium Two-Dimensional Coordination Polymer with Intercalated Infinite Chains of Decameric Water Clusters. Crystal Growth and Design, 2006, 6, 2200-2203.	1.4	118
13	Self-Assembled Copper(II) Coordination Polymers Derived from Aminopolyalcohols and Benzenepolycarboxylates:  Structural and Magnetic Properties. Inorganic Chemistry, 2008, 47, 162-175.	1.9	113
14	An Asymmetric Supercapacitor Based on a Non-Calcined 3D Pillared Cobalt(II) Metal–Organic Framework with Long Cyclic Stability. Inorganic Chemistry, 2019, 58, 16100-16111.	1.9	111
15	A new Ce-doped MgAl-LDH@Au nanocatalyst for highly efficient reductive degradation of organic contaminants. Journal of Materials Chemistry A, 2017, 5, 6716-6724.	5.2	108
16	An unprecedented heterotrimetallic Fe/Cu/Co core for mild and highly efficient catalytic oxidation of cycloalkanes by hydrogen peroxide. Chemical Communications, 2006, , 4605.	2.2	106
17	Mono-, di- and polynuclear copper(II) compounds derived from N-butyldiethanolamine: structural features, magnetism and catalytic activity for the mild peroxidative oxidation of cyclohexane. Dalton Transactions, 2009, , 2109.	1.6	105
18	Simultaneous Presence of Open Metal Sites and Amine Groups on a 3D Dy(III)-Metal–Organic Framework Catalyst for Mild and Solvent-Free Conversion of CO ₂ to Cyclic Carbonates. Inorganic Chemistry, 2021, 60, 2056-2067.	1.9	105

#	Article	IF	CITATIONS
19	An Efficient Blue-Emissive Metal–Organic Framework (MOF) for Lanthanide-Encapsulated Multicolor and Stimuli-Responsive Luminescence. Inorganic Chemistry, 2017, 56, 6362-6370.	1.9	104
20	Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Polymers Driven by Substituted Glutarate and Malonate Building Blocks: Self-Assembly Synthesis, Structural Features, and Antimicrobial Properties. Inorganic Chemistry, 2016, 55, 5886-5894.	1.9	100
21	Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coordination Chemistry Reviews, 2022, 469, 214664.	9.5	100
22	Copper(II) coordination polymers derived from triethanolamine and pyromellitic acid for bioinspired mild peroxidative oxidation of cyclohexane. Journal of Inorganic Biochemistry, 2008, 102, 1190-1194.	1.5	98
23	Aliphatic Dicarboxylate Directed Assembly of Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Networks: Topological Versatility and Antimicrobial Activity. Crystal Growth and Design, 2014, 14, 5408-5417.	1.4	95
24	Bioactive Silver–Organic Networks Assembled from 1,3,5-Triaza-7-phosphaadamantane and Flexible Cyclohexanecarboxylate Blocks. Inorganic Chemistry, 2016, 55, 1486-1496.	1.9	95
25	Hydrothermal assembly, structures, topologies, luminescence, and magnetism of a novel series of coordination polymers driven by a trifunctional nicotinic acid building block. Dalton Transactions, 2017, 46, 10908-10925.	1.6	95
26	Third-Order Nonlinear Optical Behavior of an Amide-Tricarboxylate Zinc(II) Metal–Organic Framework with Two-Fold 3D+3D Interpenetration. Inorganic Chemistry, 2021, 60, 9700-9708.	1.9	95
27	Trimetallic metal–organic frameworks and derived materials for environmental remediation and electrochemical energy storage and conversion. Coordination Chemistry Reviews, 2022, 461, 214505.	9.5	95
28	A Highly Stable Nanotubular MOF Rotator for Selective Adsorption of Benzene and Separation of Xylene Isomers. Inorganic Chemistry, 2015, 54, 10524-10526.	1.9	94
29	Multifunctional Aromatic Carboxylic Acids as Versatile Building Blocks for Hydrothermal Design of Coordination Polymers. Crystals, 2018, 8, 83.	1.0	94
30	Covalent Construction of Sustainable Hybrid UiO-66-NH ₂ @Tb-CP Material for Selective Removal of Dyes and Detection of Metal Ions. ACS Sustainable Chemistry and Engineering, 2019, 7, 3203-3212.	3.2	93
31	Single-Pot Ethane Carboxylation Catalyzed by New Oxorhenium(V) Complexes with N,O Ligands. Advanced Synthesis and Catalysis, 2005, 347, 1435-1446.	2.1	92
32	Selfâ€Assembled Twoâ€Dimensional Waterâ€Soluble Dipicolinate Cu/Na Coordination Polymer: Structural Features and Catalytic Activity for the Mild Peroxidative Oxidation of Cycloalkanes in Acidâ€Free Medium. European Journal of Inorganic Chemistry, 2008, 2008, 3423-3427.	1.0	92
33	Tuning the Solid-State White Light Emission of Postsynthetic Lanthanide-Encapsulated Double-Layer MOFs for Three-Color Luminescent Thermometry Applications. Inorganic Chemistry, 2019, 58, 4524-4533.	1.9	92
34	3D hydrogen bonded heteronuclear Coll, Nill, Cull and Znll aqua complexes derived from dipicolinic acid. Inorganica Chimica Acta, 2007, 360, 506-512.	1.2	91
35	Structurally Distinct Metal–Organic and H-Bonded Networks Derived from 5-(6-Carboxypyridin-3-yl)isophthalic Acid: Coordination and Template Effect of 4,4′-Bipyridine. Crystal Growth and Design, 2016, 16, 4658-4670.	1.4	89
36	Group 5–7 transition metal oxides as efficient catalysts for oxidative functionalization of alkanes under mild conditions. Journal of Catalysis, 2007, 248, 130-136.	3.1	88

#	Article	IF	CITATIONS
37	New silver BioMOFs driven by 1,3,5-triaza-7-phosphaadamantane-7-sulfide (PTAî€ 6): synthesis, topological analysis and antimicrobial activity. CrystEngComm, 2013, 15, 8060.	1.3	88
38	A new series of Cd(<scp>ii</scp>) metal–organic architectures driven by soft ether-bridged tricarboxylate spacers: synthesis, structural and topological versatility, and photocatalytic properties. Dalton Transactions, 2018, 47, 14327-14339.	1.6	88
39	Alkanes to carboxylic acids in aqueous medium: metal-free and metal-promoted highly efficient and mild conversions. Chemical Communications, 2009, , 2353.	2.2	85
40	Mild homogeneous oxidation of alkanes and alcohols including glycerol with tert-butyl hydroperoxide catalyzed by a tetracopper(II) complex. Journal of Catalysis, 2010, 272, 9-17.	3.1	85
41	Introducing 2-(2-carboxyphenoxy)terephthalic acid as a new versatile building block for design of diverse coordination polymers: synthesis, structural features, luminescence sensing, and magnetism. CrystEngComm, 2017, 19, 2570-2588.	1.3	85
42	A novel 2D coordination network built from hexacopper(<scp>i</scp>)-iodide clusters and cagelike aminophosphine blocks for reversible "turn-on―sensing of aniline. Journal of Materials Chemistry C, 2018, 6, 1670-1678.	2.7	85
43	Mild aerobic oxidation of benzyl alcohols to benzaldehydes in water catalyzed by aqua-soluble multicopper(II) triethanolaminate compounds. Journal of Molecular Catalysis A, 2009, 305, 178-182.	4.8	84
44	Heterometallic Coordination Polymers Assembled from Trigonal Trinuclear Fe ₂ Ni-Pivalate Blocks and Polypyridine Spacers: Topological Diversity, Sorption, and Catalytic Properties. Inorganic Chemistry, 2015, 54, 5169-5181.	1.9	84
45	2D lanthanide MOFs driven by a rigid 3,5-bis(3-carboxy-phenyl)pyridine building block: solvothermal syntheses, structural features, and photoluminescence and sensing properties. CrystEngComm, 2016, 18, 6425-6436.	1.3	84
46	Topologically Unique 2D Heterometallic Cu ^{II} /Mg Coordination Polymer: Synthesis, Structural Features, and Catalytic Use in Alkane Hydrocarboxylation. Crystal Growth and Design, 2012, 12, 1069-1074.	1.4	81
47	New water-soluble polypyridine silver(i) derivatives of 1,3,5-triaza-7-phosphaadamantane (PTA) with significant antimicrobial and antiproliferative activities. Dalton Transactions, 2013, 42, 6572.	1.6	80
48	Topologically Unique Heterometallic Cu ^{II} /Li Coordination Polymers Self-Assembled from <i>N</i> , <i>N</i> -bis(2-Hydroxyethyl)-2-aminoethanesulfonic Acid Biobuffer: Versatile Catalyst Precursors for Mild Hydrocarboxylation of Alkanes to Carboxylic Acids. Inorganic Chemistry, 2012, 51, 5224-5234.	1.9	79
49	A series of mixed-ligand 2D and 3D coordination polymers assembled from a novel multifunctional pyridine-tricarboxylate building block: hydrothermal syntheses, structural and topological diversity, and magnetic and luminescent properties. RSC Advances, 2015, 5, 78889-78901.	1.7	79
50	Bringing an "Old―Biological Buffer to Coordination Chemistry: New 1D and 3D Coordination Polymers with [Cu ₄ (Hbes) ₄] Cores for Mild Hydrocarboxylation of Alkanes. Inorganic Chemistry, 2010, 49, 6390-6392.	1.9	77
51	New Tetracopper(II) Cubane Cores Driven by a Diamino Alcohol: Self-assembly Synthesis, Structural and Topological Features, and Magnetic and Catalytic Oxidation Properties. Inorganic Chemistry, 2015, 54, 5204-5212.	1.9	77
52	Copper(II) Coordination Polymers Self-Assembled from Aminoalcohols and Pyromellitic Acid: Highly Active Precatalysts for the Mild Water-Promoted Oxidation of Alkanes. Inorganic Chemistry, 2016, 55, 125-135.	1.9	77
53	Alkali Metal Directed Assembly of Heterometallic V ^v /M (M = Na, K, Cs) Coordination Polymers: Structures, Topological Analysis, and Oxidation Catalytic Properties. Inorganic Chemistry, 2013, 52, 8601-8611.	1.9	76
54	Self-Assembly Synthesis, Structural Features, and Photophysical Properties of Dilanthanide Complexes Derived from a Novel Amide Type Ligand: Energy Transfer from Tb(III) to Eu(III) in a Heterodinuclear Derivative. Inorganic Chemistry, 2014, 53, 935-942.	1.9	76

#	Article	IF	CITATIONS
55	Extended lead(<scp>ii</scp>) architectures engineered <i>via</i> tetrel bonding interactions. New Journal of Chemistry, 2018, 42, 4959-4971.	1.4	76
56	Metal–Organic Architectures Assembled from Multifunctional Polycarboxylates: Hydrothermal Self-Assembly, Structures, and Catalytic Activity in Alkane Oxidation. Inorganic Chemistry, 2019, 58, 2403-2412.	1.9	76
57	A new multicomponent CDs/Ag@Mg–Al–Ce-LDH nanocatalyst for highly efficient degradation of organic water pollutants. Journal of Materials Chemistry A, 2018, 6, 4515-4524.	5.2	75
58	Self-Assembled 3D Heterometallic Cu ^{II} /Fe ^{II} Coordination Polymers with Octahedral Net Skeletons: Structural Features, Molecular Magnetism, Thermal and Oxidation Catalytic Properties. Inorganic Chemistry, 2010, 49, 11096-11105.	1.9	74
59	New tricopper(<scp>ii</scp>) cores self-assembled from aminoalcohol biobuffers and homophthalic acid: synthesis, structural and topological features, magnetic properties and mild catalytic oxidation of cyclic and linear C ₅ –C ₈ alkanes. Inorganic Chemistry Frontiers, 2015, 2, 525-537.	3.0	74
60	Mild oxidative functionalization of alkanes and alcohols catalyzed by new mono- and dicopper(II) aminopolyalcoholates. Journal of Molecular Catalysis A, 2011, 350, 26-34.	4.8	72
61	Two Polymorphic Forms of a Six-Coordinate Mononuclear Cobalt(II) Complex with Easy-Plane Anisotropy: Structural Features, Theoretical Calculations, and Field-Induced Slow Relaxation of the Magnetization. Inorganic Chemistry, 2016, 55, 8502-8513.	1.9	72
62	Multicopper(II) Pyromellitate Compounds: Self-Assembly Synthesis, Structural Topologies, and Magnetic Features. Crystal Growth and Design, 2008, 8, 4100-4108.	1.4	70
63	1,3,5-Triaza-7-phosphaadamantane-7-oxide (PTAâ•O): New Diamondoid Building Block for Design of Three-Dimensional Metal–Organic Frameworks. Crystal Growth and Design, 2011, 11, 2711-2716.	1.4	70
64	Copper–organic frameworks assembled from in situ generated 5-(4-pyridyl)tetrazole building blocks: synthesis, structural features, topological analysis and catalytic oxidation of alcohols. Dalton Transactions, 2014, 43, 9944-9954.	1.6	70
65	Synthesis, structural versatility, luminescent and magnetic properties of a series of coordination polymers constructed from biphenyl-2,4,4′-tricarboxylate and different N-donor ligands. CrystEngComm, 2013, 15, 10287.	1.3	69
66	Identification of Hexameric Water and Hybrid Water–Chloride Clusters Intercalated in the Crystal Hosts of (Imidoylamidine)nickel(II) Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 4621-4627.	1.0	67
67	Self-assembled dicopper(ii) diethanolaminate cores for mild aerobic and peroxidative oxidation of alcohols. Dalton Transactions, 2010, 39, 9879.	1.6	67
68	Homogeneous Multicopper Catalysts for Oxidation and Hydrocarboxylation of Alkanes. Advances in Inorganic Chemistry, 2013, , 1-31.	0.4	67
69	Engineering Coordination and Supramolecular Copperâ^'Organic Networks by Aqueous Medium Self-Assembly with 1,3,5-Triaza-7-phosphaadamantane (PTA). Crystal Growth and Design, 2009, 9, 3006-3010.	1.4	66
70	3D hydrogen bonded metal-organic frameworks constructed from [M(H2O)6][M′(dipicolinate)2]·mH2O (M/M′= Zn/Ni or Ni/Ni). Identification of intercalated acyclic (H2O)6/(H2O)10 clusters. Inorganica Chimica Acta, 2008, 361, 1728-1737.	1.2	65
71	Cageâ€like Copper(II) Silsesquioxanes: Transmetalation Reactions and Structural, Quantum Chemical, and Catalytic Studies. Chemistry - A European Journal, 2015, 21, 8758-8770	1.7	65
72	NIR light/H ₂ O ₂ -triggered nanocomposites for a highly efficient and selective synergistic photodynamic and photothermal therapy against hypoxic tumor cells. Chemical Communications, 2016, 52, 7939-7942.	2.2	64

#	Article	IF	CITATIONS
73	Bringing 5-(3,4-dicarboxylphenyl)picolinic acid to crystal engineering research: hydrothermal assembly, structural features, and photocatalytic activity of Mn, Ni, Cu, and Zn coordination polymers. CrystEngComm, 2018, 20, 906-916.	1.3	64
74	The First Copper Complexes Bearing the 1,3,5-Triaza-7-phosphaadamantane (PTA) Ligand. European Journal of Inorganic Chemistry, 2007, 2007, 2686-2692.	1.0	62
75	Metalâ€Free and Copperâ€Promoted Singleâ€Pot Hydrocarboxylation of Cycloalkanes to Carboxylic Acids in Aqueous Medium. Advanced Synthesis and Catalysis, 2009, 351, 2936-2948.	2.1	62
76	Mild, Singleâ€Pot Hydrocarboxylation of Gaseous Alkanes to Carboxylic Acids in Metalâ€Free and Copperâ€Promoted Aqueous Systems. Chemistry - A European Journal, 2010, 16, 9485-9493.	1.7	61
77	Heteronuclear iron(III)–chromium(III) hydroxo complexes and hydroxides, and their catalytic activity towards peroxidative oxidation of alkanes. Journal of Molecular Catalysis A, 2003, 206, 163-178.	4.8	60
78	An Infinite Two-Dimensional Hybrid Waterâ^'Chloride Network, Self-Assembled in a Hydrophobic Terpyridine Iron(II) Matrix. Crystal Growth and Design, 2008, 8, 782-785.	1.4	57
79	Instantaneous Sonophotocatalytic Degradation of Tetracycline over NU-1000@ZnIn ₂ S ₄ Core–Shell Nanorods as a Robust and Eco-friendly Catalyst. Inorganic Chemistry, 2021, 60, 9660-9672.	1.9	57
80	Unsymmetrical Nill–Imidoylamidine Complexes Derived from a Novel Oxime-Mediated Single-Pot Reaction of Nitriles. Chemistry - A European Journal, 2007, 13, 786-791.	1.7	52
81	Hybrid Metal–Organic-Framework/Inorganic Nanocatalyst toward Highly Efficient Discoloration of Organic Dyes in Aqueous Medium. Inorganic Chemistry, 2018, 57, 13270-13278.	1.9	51
82	A paper-based lanthanide smart device for acid–base vapour detection, anti-counterfeiting and logic operations. Inorganic Chemistry Frontiers, 2016, 3, 1014-1020.	3.0	50
83	Quick removal of metronidazole from aqueous solutions using metal–organic frameworks. New Journal of Chemistry, 2022, 46, 9440-9450.	1.4	50
84	Silver(I) Coordination Polymers Immobilized into Biopolymer Films for Antimicrobial Applications. ACS Applied Materials & Interfaces, 2021, 13, 12836-12844.	4.0	49
85	Preparation and Crystal Structures of Benzoylhydrazido- and-diazenidorhenium Complexes with N,O-Ligands and Their Catalytic Activity Towards Peroxidative Oxidation of Cycloalkanes. European Journal of Inorganic Chemistry, 2005, 2005, 2071-2080.	1.0	47
86	Heterometallic Copper(II)–Potassium 3D Coordination Polymers Driven by Multifunctionalized Azo Derivatives of β-Diketones. Crystal Growth and Design, 2011, 11, 4247-4252.	1.4	47
87	Non-Calcined Layer-Pillared Mn _{0.5} Zn _{0.5} Bimetallic–Organic Framework as a Promising Electrocatalyst for Oxygen Evolution Reaction. Inorganic Chemistry, 2022, 61, 9514-9522.	1.9	47
88	Self-Assembled Upconversion Nanoparticle Clusters for NIR-controlled Drug Release and Synergistic Therapy after Conjugation with Gold Nanoparticles. Inorganic Chemistry, 2017, 56, 5295-5304.	1.9	45
89	Unprecedented Metal-Free C(sp3)â^C(sp3) Bond Cleavage: Switching from N-Alkyl- to N-Methyl-1,3,5-triaza-7-phosphaadamantane. Organometallics, 2009, 28, 1683-1687.	1.1	43
90	Topological Diversity of Supramolecular Networks Constructed from Copper(II) Aminoalcohol Blocks and 2,6-Naphthalenedicarboxylate Linkers: Self-Assembly Synthesis, Structural Features, and Magnetic Properties. Crystal Growth and Design, 2014, 14, 3398-3407.	1.4	43

#	Article	IF	CITATIONS
91	Combining ethylenediamine and ionic liquid functionalities within SBA-15: A promising catalytic pair for tandem Cu–AAC reaction. Applied Catalysis A: General, 2017, 548, 96-102.	2.2	42
92	Antiviral, Antibacterial, Antifungal, and Cytotoxic Silver(I) BioMOF Assembled from 1,3,5-Triaza-7-Phoshaadamantane and Pyromellitic Acid. Molecules, 2020, 25, 2119.	1.7	42
93	Extending the Coordination Chemistry of 1,3,5-Triaza-7-phosphaadamantane (PTA) to Cobalt Centers: First Examples of Co-PTA Complexes and of a Metal Complex with the PTA Oxide Ligand. Inorganic Chemistry, 2008, 47, 2922-2924.	1.9	40
94	Discrete 0D and polymeric 2D and 3D derivatives assembled from [(CuL)2Zn]2+ and dicyanamide blocks (H2L = salen type Schiff bases): Genuine supramolecular isomers with distinct topologies. CrystEngComm, 2014, 16, 3029.	1.3	40
95	Metal–organic and supramolecular lead(<scp>ii</scp>) networks assembled from isomeric nicotinoylhydrazone blocks: the effects of ligand geometry and counter-ion on topology and supramolecular assembly. CrystEngComm, 2016, 18, 5375-5385.	1.3	40
96	Synthesis and crystal structures of three new lead(II) isonicotinoylhydrazone derivatives: Anion controlled nuclearity and dimensionality. Inorganica Chimica Acta, 2017, 461, 192-205.	1.2	40
97	New Fe ^{II} and Cu ^{II} Complexes Bearing Azathia Macrocycles – Catalyst Precursors for Mild Peroxidative Oxidation of Cyclohexane and 1â€Phenylethanol. European Journal of Inorganic Chemistry, 2011, 2011, 3781-3790.	1.0	37
98	Computational study on the NHC-catalyzed synthesis of 2,3-disubstituted indoles: mechanism, key intermediate and the role of the catalyst. Organic Chemistry Frontiers, 2018, 5, 1356-1365.	2.3	37
99	Disruption of "Coordination Polymer―Architecture in Cu ²⁺ Bis-Phosphonates and Carboxyphosphonates by Use of 2,2′-Bipyridine as Auxiliary Ligand: Structural Variability and Topological Analysis. Crystal Growth and Design, 2013, 13, 4480-4489.	1.4	32
100	Copper(I) Iodide Complexes Derived from <i>N</i> -Alkyl-1,3,5-triaza-7-phosphaadamantanes: Synthesis, Crystal Structures, Photoluminescence, and Identification of the Unprecedented {Cu ₃ I ₅ } ^{2â^'} Cluster. Organometallics, 2009, 28, 6425-6431.	1.1	31
101	Enhanced Separation of Potassium Ions by Spontaneous K ⁺ â€Induced Selfâ€Assembly of a Novel Metal–Organic Framework and Excess Specific Cation–π Interactions. Angewandte Chemie - International Edition, 2014, 53, 10649-10653.	7.2	31
102	1,3,5â€Triazapentadiene Nickel(II) Complexes Derived from a Ketoximeâ€Mediated Singleâ€Pot Transformation of Nitriles. European Journal of Inorganic Chemistry, 2010, 2010, 2425-2432.	1.0	30
103	Design of Silver(I)â^'PTA Coordination Polymers through Controlled N,P-Coordination of 1,3,5-Triaza-7-phosphaadamantane (PTA) with Arylcarboxylates. Crystal Growth and Design, 2010, 10, 5244-5253.	1.4	29
104	Unique Mixed-Valence Cu(I)/Cu(II) Coordination Polymer with New Topology of Bitubular 1D Chains Driven by 1,3,5-Triaza-7-phosphaadamantane (PTA). Crystal Growth and Design, 2012, 12, 5852-5857.	1.4	29
105	Two-photon sensitized hollow Gd ₂ O ₃ :Eu ³⁺ nanocomposites for real-time dual-mode imaging and monitoring of anticancer drug release. Chemical Communications, 2016, 52, 1447-1450.	2.2	28
106	New lanthanide(<scp>iii</scp>) coordination polymers: synthesis, structural features, and catalytic activity in CO ₂ fixation. Dalton Transactions, 2017, 46, 16426-16431.	1.6	28
107	Crystal engineering with 1,3,5-triaza-7-phosphaadamantane (PTA): first PTA-driven 3D metal–organic frameworks. CrystEngComm, 2011, 13, 6329.	1.3	27
108	Polar protic solvent-trapping polymorphism of the Hg ^{II} -hydrazone coordination polymer: experimental and theoretical findings. CrystEngComm, 2017, 19, 3017-3025.	1.3	27

#	Article	IF	CITATIONS
109	New lanthanide 2D coordination polymers constructed from a flexible ether-bridged tricarboxylate block: Synthesis, structures and luminescence sensing. Inorganica Chimica Acta, 2018, 469, 98-104.	1.2	26
110	New Copper(II) Coordination Compounds Assembled from Multifunctional Pyridine-Carboxylate Blocks: Synthesis, Structures, and Catalytic Activity in Cycloalkane Oxidation. Molecules, 2019, 24, 6.	1.7	26
111	Epoxy Functional Composites Based on Lanthanide Metal–Organic Frameworks for Luminescent Polymer Materials. ACS Applied Materials & Interfaces, 2021, 13, 7625-7634.	4.0	26
112	New diamondoid-like [Cu3B(μ-O)6] core self-assembled from Bis-Tris biobuffer for mild hydrocarboxylation of alkanes to carboxylic acids. Dalton Transactions, 2011, 40, 6378.	1.6	25
113	A variety of metal–organic and supramolecular networks constructed from a new flexible multifunctional building block bearing picolinate and terephthalate functionalities: hydrothermal self-assembly, structural features, magnetic and luminescent properties. RSC Advances, 2015, 5, 87484-87495.	1.7	25
114	Inorganic–organic hybrid materials based on PbBr ₂ and pyridine–hydrazone blocks – structural and theoretical study. RSC Advances, 2016, 6, 60385-60393.	1.7	24
115	Unusual shift of a nitro group in a phenylhydrazo-β-diketone. Dalton Transactions, 2011, 40, 12472.	1.6	23
116	Two mixed-ligand cadmium(<scp>ii</scp>) compounds bearing 5-nitrosopyrimidine and N-donor aromatic blocks: self-assembly generation, structural and topological features, DFT studies, and Hirshfeld surface analysis. CrystEngComm, 2016, 18, 5647-5657.	1.3	23
117	A new series of Co, Ni, Zn, and Cd metal–organic architectures driven by an unsymmetrical biphenyl-tricarboxylic acid: hydrothermal assembly, structural features and properties. Dalton Transactions, 2018, 47, 7431-7444.	1.6	23
118	Structural Systematics and Topological Analysis of Coordination Polymers with Divalent Metals and a Glycine-Derived Tripodal Phosphonocarboxylate. Crystal Growth and Design, 2014, 14, 5234-5243.	1.4	22
119	Nickel(II) complexes self-assembled from hexamethylenetetramine and isomeric nitrobenzoates: Structural diversity and supramolecular features. Polyhedron, 2014, 79, 66-71.	1.0	22
120	Versatile rare-earth oxide nanocomposites: enhanced chemo/photothermal/photodynamic anticancer therapy and multimodal imaging. Journal of Materials Chemistry B, 2016, 4, 7832-7844.	2.9	22
121	Effect of Substituent on the Mechanism and Chemoselectivity of the Gold(I)-Catalyzed Propargyl Ester Tandem Cyclization. Organometallics, 2017, 36, 1164-1172.	1.1	22
122	Mild homogeneous oxidation and hydrocarboxylation of cycloalkanes catalyzed by novel dicopper(II) aminoalcohol-driven cores. Journal of Molecular Catalysis A, 2017, 426, 357-367.	4.8	22
123	Carbocation versus Carbene Controlled Chemoselectivity: DFT Study on Gold- and Silver-Catalyzed Alkylation/Cyclopropanation of Indoles with Vinyl Diazoesters. Organic Letters, 2020, 22, 4043-4048.	2.4	22
124	Hybrid materials based on novel 2D lanthanide coordination polymers covalently bonded to amine-modified SBA-15 and MCM-41: assembly, characterization, structural features, thermal and luminescence properties. Dalton Transactions, 2016, 45, 18610-18621.	1.6	21
125	Three-component 1D and 2D metal phosphonates: structural variability, topological analysis and catalytic hydrocarboxylation of alkanes. RSC Advances, 2017, 7, 17788-17799.	1.7	21
126	Heterometallic (3d-4f) Coordination Clusters with Unique Topology: Self-Assembly Synthesis, Structural Features, and Magnetic Properties. Crystal Growth and Design, 2020, 20, 6545-6554.	1.4	21

#	Article	IF	CITATIONS
127	Introducing a flexible tetracarboxylic acid linker into functional coordination polymers: synthesis, structural traits, and photocatalytic dye degradation. New Journal of Chemistry, 2020, 44, 16082-16091.	1.4	21
128	Unprecedented Mixed-Valence Cu(I)/Cu(II) Complex Derived from N-Methyl-1,3,5-triaza-7-phosphaadamantane: Synthesis, Structural Features, and Magnetic Properties. Organometallics, 2012, 31, 7921-7925.	1.1	20
129	New aqua-soluble dicopper(<scp>ii</scp>) aminoalcoholate cores for mild and water-assisted catalytic oxidation of alkanes. Catalysis Science and Technology, 2016, 6, 4584-4593.	2.1	20
130	Mild oxidative Câ^'H functionalization of alkanes and alcohols using a magnetic core-shell Fe3O4@mSiO2@Cu4 nanocatalyst. Journal of Molecular Catalysis A, 2017, 426, 343-349.	4.8	20
131	H-Bonded and metal(<scp>ii</scp>)–organic architectures assembled from an unexplored aromatic tricarboxylic acid: structural variety and functional properties. Dalton Transactions, 2020, 49, 7197-7209.	1.6	20
132	Mild, single-pot hydrocarboxylation of linear C5–C9 alkanes into branched monocarboxylic C6–C10 acids in copper-catalyzed aqueous systems. Applied Catalysis A: General, 2011, 401, 106-113.	2.2	19
133	Three-Component Copper-Phosphonate-Auxiliary Ligand Systems: Proton Conductors and Efficient Catalysts in Mild Oxidative Functionalization of Cycloalkanes. Inorganic Chemistry, 2018, 57, 10656-10666.	1.9	19
134	Structural diversity in new coordination polymers modulated by semirigid ether-linked pyridine-phthalate building block and ancillary ligands: syntheses, structures, and luminescence properties. CrystEngComm, 2015, 17, 3117-3128.	1.3	18
135	Self-assembly synthesis, structure, topology, and magnetic properties of a mononuclear Fe(<scp>iii</scp>)-violurate derivative: a combined experimental and theoretical study. Dalton Transactions, 2016, 45, 16166-16172.	1.6	18
136	Self-Assembly and Multifaceted Bioactivity of a Silver(I) Quinolinate Coordination Polymer. Inorganic Chemistry, 2021, 60, 15435-15444.	1.9	18
137	Assembling supramolecular networks by halogen bonding in coordination polymers driven by 5-bromonicotinic acid. Journal of Solid State Chemistry, 2014, 213, 256-267.	1.4	17
138	Unique Copper–Organic Networks Self-Assembled from 1,3,5-Triaza-7-Phosphaadamantane and Its Oxide: Synthesis, Structural Features, and Magnetic and Catalytic Properties. Crystal Growth and Design, 2018, 18, 2814-2823.	1.4	17
139	A 3D heterometallic Ni(<scp>ii</scp>)/K(<scp>i</scp>) MOF with a rare rna topology: synthesis, structural features, and photocatalytic dye degradation modeling. New Journal of Chemistry, 2019, 43, 17457-17465.	1.4	17
140	Bis(triethanolamine-κ3N,O,O′)nickel(II) benzene-1,4-dicarboxylate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m2746-m2748.	0.2	16
141	Structural Versatility of Alkali Metal Coordination Polymers Driven by Arylhydrazones of β-Diketones. Crystal Growth and Design, 2013, 13, 5076-5084.	1.4	16
142	New cadmium(II) and zinc(II) coordination polymers derived from a pyridine-hydrazone block: Self-assembly generation, structural and topological features, and theoretical analysis. Inorganica Chimica Acta, 2017, 458, 68-76.	1.2	16
143	Hydrothermal generation, structural versatility and properties of metal(<scp>ii</scp>)-organic architectures driven by a pyridine-tricarboxylic acid. Dalton Transactions, 2019, 48, 8361-8374.	1.6	16
144	Lead(<scp>ii</scp>) coordination polymers driven by pyridine-hydrazine donors: from anion-guided self-assembly to structural features. Dalton Transactions, 2020, 49, 11238-11248.	1.6	16

#	Article	IF	CITATIONS
145	A picolinate-N2 complex of rhenium, the first dinitrogen complex bearing a carboxylate or a N,O-ligand. Journal of Organometallic Chemistry, 2006, 691, 4153-4158.	0.8	15
146	A modular approach for molecular recognition by zinc dipicolinate complexes. Dalton Transactions, 2015, 44, 14411-14423.	1.6	15
147	Exploring biphenyl-2,4,4′-tricarboxylic acid as a flexible building block for the hydrothermal self-assembly of diverse metal–organic and supramolecular networks. CrystEngComm, 2016, 18, 765-778.	1.3	15
148	Computational Study on Gold-Catalyzed Cascade Reactions of 1,4-Diynes and Pyrroles: Mechanism, Regioselectivity, Role of Catalyst, and Effects of Substituent and Solvent. Organometallics, 2018, 37, 1927-1936.	1.1	15
149	Mild C–H functionalization of alkanes catalyzed by bioinspired copper(<scp>ii</scp>) cores. Organic and Biomolecular Chemistry, 2019, 17, 7706-7714.	1.5	15
150	Coordination polymers from an unexplored biphenyl-tricarboxylate linker: hydrothermal synthesis, structural traits and catalytic cyanosilylation. Inorganic Chemistry Frontiers, 2021, 8, 1229-1242.	3.0	15
151	Synthesis, Characterization and Redox Behaviour of Mono- and Dicarbonyl Phosphane Rhenium(I) Complexes Bearing N-, N,N- and N,O-Type Ligands. European Journal of Inorganic Chemistry, 2007, 2007, 1556-1565.	1.0	14
152	Exploring 4-(3-carboxyphenyl)picolinic acid as a semirigid building block for the hydrothermal self-assembly of diverse metal–organic and supramolecular networks. CrystEngComm, 2017, 19, 117-128.	1.3	14
153	Novel double layer lanthanide metal–organic networks for sensing applications. Dalton Transactions, 2018, 47, 465-474.	1.6	14
154	Cu ₆ - and Cu ₈ -Cage Sil- and Germsesquioxanes: Synthetic and Structural Features, Oxidative Rearrangements, and Catalytic Activity. Inorganic Chemistry, 2021, 60, 8062-8074.	1.9	14
155	Synthesis, characterization and molecular structures of the hybrid organic–inorganic salts of N-alkyl-1,3,5-triaza-7-phosphaadamantane (alkyl=methyl, ethyl) and tetra(isothiocyanato)cobalt(II). Inorganica Chimica Acta, 2009, 362, 1645-1649.	1.2	13
156	Theoretical study on the mechanism and chemoselectivity in gold(<scp>i</scp>)-catalyzed cycloisomerization of β,β-disubstituted <i>ortho</i> -(alkynyl)styrenes. Organic Chemistry Frontiers, 2019, 6, 2701-2712.	2.3	13
157	Synthesis, characterization, DNA binding ability, in vitro cytotoxicity, electrochemical properties and theoretical studies of copper(II) carboxylate complexes. Inorganica Chimica Acta, 2021, 518, 120235.	1.2	13
158	Synthesis, characterization and molecular structures of the trichloro-η1-benzoyldiazenido [ReCl3{η1-NNC(O)Ph}(PPh3)2] and oxorhenium [ReOCl2(OMe)(PPh3)2] complexes derived from reactions of [ReCl2{η2-NNC(O)Ph}(PPh3)2] with a peroxide or dioxygen. Inorganica Chimica Acta, 2006, 359, 4421-4426	1.2	12
159	Supramolecular interactions through lone pair(lp)â€"ï€ and hydrogen bonding in cobalt(III) and manganese(II) derivatives of N,N′-dimethylvioluric acid: A combined experimental and theoretical study. Inorganica Chimica Acta, 2015, 435, 178-186.	1.2	12
160	Photoluminescence enhancement induced by a halide anion encapsulation in a series of novel lanthanide(<scp>iii</scp>) coordination polymers. CrystEngComm, 2016, 18, 1190-1199.	1.3	12
161	Unusual solvent-mediated hydrolysis of dicarboxylate monoester ligands in copper(<scp>ii</scp>) complexes toward simultaneous crystallization of new dicarboxylate derivatives. RSC Advances, 2014, 4, 47876-47886.	1.7	11
162	Synthesis, Structure, and Topological Studies of Solvates and Salts of a Chiral Zwitterionic Host <i>N</i> -(2-Imidazol-5-yl-1-carboxyethyl)-1,8-naphthalimide. Crystal Growth and Design, 2015, 15, 737-751.	1.4	11

#	Article	IF	CITATIONS
163	Halide ion-driven self-assembly of Zn(<scp>ii</scp>) compounds derived from an asymmetrical hydrazone building block: a combined experimental and theoretical study. New Journal of Chemistry, 2016, 40, 10116-10126.	1.4	11
164	Metal–organic architectures designed from a triphenyl-pentacarboxylate linker: hydrothermal assembly, structural multiplicity, and catalytic Knoevenagel condensation. Inorganic Chemistry Frontiers, 2021, 8, 4209-4221.	3.0	11
165	Exploring Cagelike Silsesquioxane Building Blocks for the Design of Heterometallic Cu ₄ /M ₄ Architectures. Crystal Growth and Design, 2022, 22, 2146-2157.	1.4	11
166	Novel nickel(II) complex bearing phthalimido ligands derived from oxime-mediated transformation of phthalonitrile. Inorganic Chemistry Communication, 2008, 11, 117-120.	1.8	10
167	Exploring 5-fluoronicotinic acid as a versatile building block for the generation of topologically diverse metal–organic and supramolecular Ni, Co, and Cd networks. RSC Advances, 2015, 5, 10400-10411.	1.7	10
168	Zinc(II) and lead(II) metal-organic networks driven by a multifunctional pyridine-carboxylate building block: Hydrothermal synthesis, structural and topological features, and luminescence properties. Journal of Molecular Structure, 2016, 1120, 327-332.	1.8	10
169	A multifunctional nanocomposite for luminescence resonance energy transfer-guided synergistic monitoring and therapy under single near infrared light. Chemical Communications, 2016, 52, 4880-4883.	2.2	10
170	Nickel(II) based homo- vs heterometallic 1D coordination polymers derived from a novel 6-aminouracil building block: Structures, topologies, non-covalent interactions, magnetism, and antibacterial activity. Inorganica Chimica Acta, 2018, 482, 384-394.	1.2	10
171	Phosphonate Decomposition-Induced Polyoxomolybdate Dumbbell-Type Cluster Formation: Structural Analysis, Proton Conduction, and Catalytic Sulfoxide Reduction. Inorganic Chemistry, 2019, 58, 11522-11533.	1.9	10
172	Coordination Polymers Driven by Carboxy Functionalized Picolinate Linkers: Hydrothermal Assembly, Structural Multiplicity, and Catalytic Features. Crystal Growth and Design, 2021, 21, 5145-5157.	1.4	10
173	Butterfly-like Heteronuclear 3d–4f Metal Clusters: Synthesis, Structures, Magnetic Properties, and Magnetocaloric Effect. Crystal Growth and Design, 2022, 22, 608-614.	1.4	10
174	Transformations of the Vaska-type complex trans-[RhCl(CO)(PTA)2] (PTA=1,3,5-triaza-7-phosphaadamantane) during stepwise addition of HCl: Synthesis, characterization and crystal structure of trans-[RhCl2(PTA)(PTAH)]. Inorganica Chimica Acta, 2011, 378, 342-346.	1.2	9
175	Mixed-ligand aminoalcohol-dicarboxylate copper(II) coordination polymers as catalysts for the oxidative functionalization of cyclic alkanes and alkenes. Pure and Applied Chemistry, 2017, 89, 61-73.	0.9	9
176	Insight into the reaction mechanism and chemoselectivity in the cycloaddition of ynamides and isoxazoles with H ₂ O. Catalysis Science and Technology, 2020, 10, 240-251.	2.1	9
177	Color tuning of intrinsic white-light emission in anthracene-linker coordination networks. Dalton Transactions, 2020, 49, 12082-12087.	1.6	9
178	Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: Hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties. Journal of Solid State Chemistry, 2016, 241, 121-130.	1.4	8
179	How Does the Catalyst Affect the Reaction Pathway? DFT Analysis of the Mechanism and Selectivity in the 1,6-Diyne Ester Cycloisomerization. Organometallics, 2018, 37, 261-270.	1.1	8
180	Computational study on GaCl ₃ -mediated reactions of donor–acceptor cyclopropanes with aromatic aldehydes: mechanism and role of GaCl ₃ and aldehydes. Organic Chemistry Frontiers, 2018, 5, 1702-1712.	2.3	8

#	Article	IF	CITATIONS
181	Bottom up synthesis for homo- and heterometallic 2,3-pyridinedicarboxylate coordination compounds. Polyhedron, 2015, 102, 521-529.	1.0	7
182	Self-assembly synthesis, structural features, reversible temperature-induced dehydration/hydration, and magnetic and luminescence properties of lanthanide(<scp>iii</scp>) compounds derived from 5-fluoronicotinic acid. CrystEngComm, 2016, 18, 2303-2311.	1.3	7
183	Nickel(II) and manganese(II) metal–organic networks driven by 2,2′-bipyridine-5,5′-dicarboxylate blocks: synthesis, structural features, and magnetic properties. Transition Metal Chemistry, 2016, 41, 153-160.	0.7	7
184	Self-assembled 3D heterometallic Zn(II)/K(I) metal–organic framework with the fluorite topology. Polyhedron, 2018, 142, 110-114.	1.0	7
185	Extending the family of quinolone antibacterials to new copper derivatives: self-assembly, structural and topological features, catalytic and biological activity. New Journal of Chemistry, 2018, 42, 19644-19658.	1.4	7
186	New Microbe Killers: Self-Assembled Silver(I) Coordination Polymers Driven by a Cagelike Aminophosphine. Materials, 2019, 12, 3353.	1.3	7
187	Sonochemical Synthesis of Cadmium(II) Coordination Polymer Nanospheres as Precursor for Cadmium Oxide Nanoparticles. Crystals, 2019, 9, 199.	1.0	7
188	Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action. Journal of Inorganic Biochemistry, 2020, 205, 110990.	1.5	7
189	Metal–organic architectures driven by a multifunctional 6-aminouracil spacer: structures, noncovalent interactions, and conductivity. CrystEngComm, 2020, 22, 829-840.	1.3	7
190	Density Functional Theory Study of the Metal-Catalyzed Cycloaddition of Indolyl-Allenes: Possible Reaction Pathways, Stereoselectivity, and Regioselectivity. Organometallics, 2020, 39, 1782-1789.	1.1	7
191	The DFT Quest for Possible Reaction Pathways, Catalytic Species, and Regioselectivity in the InCl ₃ -Catalyzed Cycloaddition of <i>N</i> -Tosyl Formaldimine with Olefins or Allenes. Journal of Organic Chemistry, 2020, 85, 3676-3688.	1.7	7
192	A 3D MOF based on Adamantoid Tetracopper(II) and Aminophosphine Oxide Cages: Structural Features and Magnetic and Catalytic Properties. Inorganic Chemistry, 2021, 60, 9631-9644.	1.9	7
193	Synthesis, characterization and redox behaviour of benzoyldiazenido- and oxorhenium complexes bearing N,N- and S,S-type ligands. Inorganica Chimica Acta, 2010, 363, 1269-1274.	1.2	6
194	Tuning topological and dimensional versatility from 1D to 3D of Zn/Cd luminescent biphenyl-3,5-dicarboxylate coordination polymers by ancillary ligand. Journal of Coordination Chemistry, 2016, 69, 2200-2209.	0.8	6
195	Two manganese(II) coordination polymers driven by (iso)nicotinoyl-hydrazone blocks and pseudohalide ancillary ligands: syntheses, structural features, and magnetic properties. Journal of Coordination Chemistry, 2017, 70, 1973-1983.	0.8	6
196	Study of an efficient conversion of 1,3-dimethyl-5-(Arylazo)-6-Amino-Uracils to 1,3-dimethyl-8-(Aryl)-Azapurin-2,6-Diones. Journal of Molecular Structure, 2017, 1150, 118-126.	1.8	6
197	Interplay between H-bonding and interpenetration in an aqueous copper(<scp>ii</scp>)–aminoalcohol–pyromellitic acid system: self-assembly synthesis, structural features and catalysis. Dalton Transactions, 2018, 47, 16674-16683.	1.6	6
198	Synthesis, structural features, antibacterial behaviour and theoretical investigation of two new manganese(III) Schiff base complexes. Polyhedron, 2018, 151, 407-416.	1.0	6

#	Article	IF	CITATIONS
199	Tetracopper(II) Cores Driven by an Unexplored Trifunctional Aminoalcohol Sulfonic Acid for Mild Catalytic C–H Functionalization of Alkanes. Catalysts, 2019, 9, 321.	1.6	6
200	Coordination Polymers from 2-Chloroterephthalate Linkers: Synthesis, Structural Diversity, and Catalytic CO ₂ Fixation. Crystal Growth and Design, 2021, 21, 2876-2888.	1.4	6
201	DFT Study on Zr-Catalyzed Alkene Hydroaminoalkylation: Origin of Regioselectivity, Diastereoselectivity, and Influence of Substrate. Organic Letters, 2021, 23, 583-587.	2.4	6
202	1-Methyl-1-azonia-3,5-diaza-7-phosphatricyclo[3.3.1.1 ^{3,7}]decane tetrafluoroborate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o556-o556.	0.2	6
203	Bis{μ-2-[bis(2-hydroxyethyl)amino]ethanolato}bis(4-methylbenzoato)dicopper(II) dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m526-m528.	0.2	5
204	New Topologically Unique Metal-Organic Architectures Driven by a Pyridine-Tricarboxylate Building Block. Crystals, 2018, 8, 353.	1.0	5
205	Structural diversity of alkali metal coordination polymers driven by flexible biphenyl-4,4′-dioxydiacetic acid. Journal of Solid State Chemistry, 2018, 265, 92-99.	1.4	5
206	Hybrid Silver(I)-Doped Soybean Oil and Potato Starch Biopolymer Films to Combat Bacterial Biofilms. ACS Applied Materials & Interfaces, 2022, 14, 25104-25114.	4.0	5
207	Diaquabis(2-hydroxyiminopropionato-κ2N,O)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1670-m1671.	0.2	4
208	Self-assembly generation, structural features, and oxidation catalytic properties of new aqua-soluble copper(<scp>ii</scp>)-aminoalcohol derivatives. Inorganic Chemistry Frontiers, 2017, 4, 968-977.	3.0	4
209	Novel metal-organic and supramolecular 3D frameworks constructed from flexible biphenyl-2,5,3′-tricarboxylate blocks: Synthesis, structural features and properties. Journal of Molecular Structure, 2017, 1145, 339-346.	1.8	4
210	Metal(II) Coordination Polymers from Tetracarboxylate Linkers: Synthesis, Structures, and Catalytic Cyanosilylation of Benzaldehydes. Catalysts, 2021, 11, 204.	1.6	4
211	Time-Dependent Self-Assembly of Copper(II) Coordination Polymers and Tetranuclear Rings: Catalysts for Oxidative Functionalization of Saturated Hydrocarbons. Inorganic Chemistry, 2021, 60, 14491-14503.	1.9	4
212	Three-dimensional hydrogen-bonded supramolecular assembly in tetrakis(1,3,5-triaza-7-phosphaadamantane)copper(I) chloride hexahydrate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m603-m604.	0.2	4
213	DFT Rationalization of Gold(I)-Catalyzed Couplings between Alkynyl Thioether and Nitrenoid Derivatives: Mechanism, Selectivity Patterns, and Effects of Substituents. Journal of Organic Chemistry, 2022, 87, 7193-7201.	1.7	4
214	Physical chemistry of the polynuclear hydrolysis of aluminium and two-charged ions of 3d-metals. Journal of Molecular Liquids, 2003, 103-104, 275-289.	2.3	3
215	Synthesis, Structural Features, and Catalytic Activity of an Iron(II) 3D Coordination Polymer Driven by an Ether-Bridged Pyridine-Dicarboxylate. Crystals, 2019, 9, 369.	1.0	3
216	New silver (thio)semicarbazide derivatives: synthesis, structural features, and antimicrobial activity. New Journal of Chemistry, 2020, 44, 10924-10932.	1.4	3

#	Article	IF	CITATIONS
217	A Flexible Aromatic Tetracarboxylate as a New Linker for Coordination Polymers. Crystals, 2020, 10, 84.	1.0	3
218	Mild oxidative functionalization of cycloalkanes catalyzed by novel dicopper(II) cores. Molecular Catalysis, 2021, 503, 111401.	1.0	3
219	Structural and Thermal Investigations of Co(II) and Ni(II) Coordination Polymers Based on biphenyl-4,4′-dioxydiacetate Linker. Materials, 2021, 14, 3545.	1.3	3
220	DFT Quest of the Active Species of the Gallium-Mediated Coupling of Methylidenemalonates and Acetylenes. Inorganic Chemistry, 2021, 60, 995-1006.	1.9	3
221	Rationalization of the mechanism and chemoselectivity of versatile Au-catalyzed reactions of diazoesters with allyl-functionalized sulfides, selenides, amines, or ethers by DFT. Organic Chemistry Frontiers, 2021, 8, 6053-6062.	2.3	3
222	DFT quest for mechanism and stereoselectivity in B(C6F5)3-catalyzed cyclopropanation of alkenes with aryldiazoacetates. Molecular Catalysis, 2021, 516, 111980.	1.0	3
223	Zn(<scp>ii</scp>) metal–organic architectures from ether-bridged tetracarboxylate linkers: assembly, structural variety and catalytic features. CrystEngComm, 2022, 24, 5297-5306.	1.3	3
224	Thermolysis of Coprecipitated Copper(II)-Nickel(II) Hydroxides. Russian Journal of Applied Chemistry, 2001, 74, 12-17.	0.1	2
225	Preface to Special Issue: C–H functionalization in modern molecular catalysis. Journal of Molecular Catalysis A, 2017, 426, 271-272.	4.8	2
226	DFT study on the "Silver effect―in gold-catalyzed hydroamination of terminal alkynyl sulfamides. Molecular Catalysis, 2020, 486, 110847.	1.0	2
227	Layered Inorganic–Organic 3,5-Dimethylpyrazole-4-Sulfonate Films for Protection of Copper Surfaces against Corrosion. Crystal Growth and Design, 2021, 21, 5421-5439.	1.4	2
228	Coupling 6-chloro-3-methyluracil with copper: structural features, theoretical analysis, and biofunctional properties. Dalton Transactions, 2021, 50, 13533-13542.	1.6	2
229	1-Methyl-1-azonia-3,5-diaza-7-phosphatricyclo[3.3.1.1]decane 7-oxide triiodide. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o496-o497.	0.2	2
230	Coordination complexes based on 4-aminobenzonitrile with different dimensionalities. Journal of Coordination Chemistry, 2013, 66, 1602-1615.	0.8	1
231	Bringing a New Flexible Mercaptoacetic Acid Linker to the Design of Coordination Polymers. Polymers, 2020, 12, 1329.	2.0	1
232	Silver(I)-Tazobactam Frameworks with Improved Antimicrobial Activity. Frontiers in Chemistry, 2021, 9, 815827.	1.8	1
233	Os(VI)O2/K Metal–Organic Frameworks: Infinite Chain, Grid, and Porous Networks. Crystal Growth and Design, 2014, 14, 2703-2708.	1.4	0
234	4,4′-(Pyridine-2,5-diyl)dibenzoic acid as a building block for Cd(II) and Mn(II) coordination compounds: Synthesis, structural features and properties. Inorganica Chimica Acta, 2015, 435, 60-65.	1.2	0

#	Article	IF	CITATIONS
235	Biosketch of Professor Georgiy B. Shul'pin. Journal of Molecular Catalysis A, 2017, 426, 273-274.	4.8	0