List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3378233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses. Optics Letters, 1994, 19, 737.	3.3	262
2	Optical pulse shaping approaches to coherent control. Physics Reports, 2003, 374, 385-481.	25.6	231
3	Core-Modified Expanded Porphyrins with Large Third-Order Nonlinear Optical Response. Journal of the American Chemical Society, 2005, 127, 11608-11609.	13.7	185
4	Adiabatic population transfer with frequencyâ€swept laser pulses. Journal of Chemical Physics, 1994, 101, 6439-6454.	3.0	175
5	Zinc(II)- and Copper(I)-Mediated Large Two-Photon Absorption Cross Sections in a Bis-cinnamaldiminato Schiff Base. Journal of the American Chemical Society, 2006, 128, 402-403.	13.7	142
6	Solvent effect on two-photon absorption and fluorescence of rhodamine dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 188-197.	3.9	84
7	22ï€ Smaragdyrin Molecular Conjugates with Aromatic Phenylacetylenes and Ferrocenes: Syntheses, Electrochemical, and Photonic Properties. Journal of the American Chemical Society, 2006, 128, 16083-16091.	13.7	83
8	Aromatic Core Modified Decaphyrins with the Largest Two-Photon Absorption Cross-Sections: Syntheses and Characterization. Organic Letters, 2006, 8, 2325-2328.	4.6	60
9	Ultrafast pulse shaping: amplification and characterization. Optics Express, 1998, 3, 366.	3.4	57
10	Laser-enhanced NMR spectroscopy. Science, 1992, 255, 1683-1685.	12.6	56
11	Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination. Applied Optics, 2009, 48, G33.	2.1	54
12	Modified (22ï€) Smaragdyrins with Large Two-Photon Absorption Cross Section:  A Structure Function Correlation. Organic Letters, 2006, 8, 629-631.	4.6	43
13	Suppression of supercontinuum generation with circularly polarized light. Optics Communications, 2000, 181, 101-107.	2.1	40
14	Rapid ultrafine-tunable optical delay line at the 155-µm wavelength. Optics Letters, 1998, 23, 1843.	3.3	37
15	Two-photon cross-section measurements using an optical chopper: <i>z</i> -scan and two-photon fluorescence schemes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 065103.	1.5	37
16	Control of supercontinuum generation with polarization of incident laser pulses. Applied Physics B: Lasers and Optics, 2003, 77, 325-328.	2.2	36
17	Effect of green tea polyphenols on angiogenesis induced by an angiogenin-like protein. Biochemical and Biophysical Research Communications, 2003, 308, 64-67.	2.1	36
18	Coumarin derived chromophores in the donor–acceptor–donor format that gives fluorescence enhancement and large two-photon activity in presence of specific metal ions. Inorganica Chimica Acta, 2010, 363, 2824-2832.	2.4	35

#	Article	IF	CITATIONS
	Synthesis, Structure, and Two-Photon Absorption Studies of a Phosphorus-Based Tris Hydrazone		
19	Ligand (<i>S</i>)P[N(Me)Nâ•CH-C ₆ H ₃ - <i>2</i> OH- <i>4</i> N(CH ₂ CH _{3and Its Metal Complexes. Inorganic Chemistry, 2010, 49, 4008-4016.}	ub>) <sub:< td=""><td>>24/sub>]</td></sub:<>	>24/sub>]
20	Molecular structure-property correlations from optical nonlinearity and thermal-relaxation dynamics. Chemical Physics Letters, 2009, 469, 104-109.	2.6	33
21	Coherent control of multiphoton transitions with femtosecond pulse shaping. Physical Review A, 2001, 64, .	2.5	32
22	Graphene oxide from silk cocoon: a novel magnetic fluorophore for multi-photon imaging. 3 Biotech, 2014, 4, 67-75.	2.2	31
23	Probing Intermolecular Interaction through Thermal-Lens Spectroscopy. Journal of Physical Chemistry B, 2011, 115, 262-268.	2.6	30
24	Control of chemical dynamics by restricting intramolecular vibrational relaxation. Journal of Chemical Physics, 1993, 99, 4509-4517.	3.0	28
25	Importance of molecular heat convection in time resolved thermal lens study of highly absorbing samples. Chemical Physics, 2014, 441, 5-10.	1.9	28
26	Exploring the physics of efficient optical trapping of dielectric nanoparticles with ultrafast pulsed excitation. Applied Optics, 2015, 54, 7002.	2.1	28
27	Fluorescence Quenching of Few Aromatic Amines by Chlorinated Methanes. Bulletin of the Chemical Society of Japan, 1991, 64, 3137-3141.	3.2	27
28	Polarization induced control of single and two-photon fluorescence. Journal of Chemical Physics, 2010, 132, 154508.	3.0	24
29	Laser Phase Modulation Approaches towards Ensemble Quantum Computing. Physical Review Letters, 2002, 88, 177901.	7.8	23
30	White Light Induced E/Z-Photoisomerization of Diphenylamine-Tethered Fluorescent Stilbene Derivatives: Synthesis, Photophysical, and Electrochemical Investigation. Journal of Organic Chemistry, 2018, 83, 3669-3678.	3.2	23
31	Deciphering micro-polarity inside the endoplasmic reticulum using a two-photon active solvatofluorochromic probe. Chemical Communications, 2018, 54, 10590-10593.	4.1	23
32	Oneâ€Pot Synthesis of Coreâ€Modified Rubyrin, Octaphyrin, and Dodecaphyrin: Characterization and Nonlinear Optical Properties. European Journal of Organic Chemistry, 2007, 2007, 4552-4562.	2.4	22
33	Efficient ultrafast optical limiting using single walled carbon nanotubes functionalized noncovalently with free base and metalloporphyrins. Journal of Applied Physics, 2011, 109, .	2.5	22
34	Third-order nonlinear optical response and ultrafast dynamics of tetraoxa[22]porphyrin(2.1.2.1)s. Journal of Materials Chemistry C, 2016, 4, 9445-9453.	5.5	22
35	Thermal Lens Study of NIR Femtosecond Laser-Induced Convection in Alcohols. ACS Omega, 2019, 4, 1889-1896.	3.5	22

#	Article	IF	CITATIONS
37	Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses. Chemical Physics, 2009, 360, 47-52.	1.9	21
38	Exploring the Nature of Photo-Damage in Two-photon Excitation by Fluorescence Intensity Modulation. Journal of Fluorescence, 2009, 19, 381-386.	2.5	20
39	Generation of Stable Overlaps between Antiparallel Filaments. Physical Review Letters, 2015, 115, 118103.	7.8	19
40	Effects of pulses with simple phase and frequency modulations. Physical Review A, 1994, 50, 5190-5196.	2.5	18
41	Laser enhanced NMR spectroscopy, revisited. Molecular Physics, 1998, 93, 371-375.	1.7	18
42	Propagation of Complex Laser Pulses in Optically Dense Media. Physical Review Letters, 1999, 82, 3984-3987.	7.8	18
43	Ultrafast nonlinear optical response of carbon nanotubes functionalized with water soluble porphyrin. Optics Communications, 2012, 285, 1920-1924.	2.1	18
44	Unraveling the molecular dependence of femtosecond laser-induced thermal lens spectroscopy in fluids. Analyst, The, 2020, 145, 929-938.	3.5	18
45	Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach. International Reviews in Physical Chemistry, 2011, 30, 275-299.	2.3	17
46	Polarization induced control of multiple fluorescence from a molecule. Chemical Physics Letters, 2013, 579, 45-50.	2.6	17
47	Effect of molecular structural isomers in thermal lens spectroscopy. Chemical Physics Letters, 2014, 601, 163-167.	2.6	17
48	Attachment of Different Donor Groups to a Cryptand for Modulation of Twoâ€Photon Absorption Cross‣ection. Chemistry - A European Journal, 2008, 14, 10628-10638.	3.3	16
49	Twoâ€Photonâ€Absorption Technique for Selective Detection of Copper(II) Ions in Aqueous Solution Using a Dansyl–Pyrene Conjugate. Chemistry - an Asian Journal, 2011, 6, 2246-2250.	3.3	16
50	Unusual behavior of thermal lens in alcohols. Physical Chemistry Chemical Physics, 2014, 16, 12291-12298.	2.8	16
51	Controlling local temperature in water using femtosecond optical tweezer. Biomedical Optics Express, 2015, 6, 3190.	2.9	14
52	Measurement of pure optical nonlinearity in carbon disulfide with a high-repetition-rate femtosecond laser. Applied Optics, 2017, 56, 644.	2.1	13
53	Solvent effect on multiple emission and ultrafast dynamics of higher excited states. Chemical Physics Letters, 2018, 706, 375-379.	2.6	13
54	Nonlinear absorption in tetrathia[22]porphyrin(2.1.2.1)s: visualizing strong reverse saturable absorption at non-resonant excitation. RSC Advances, 2016, 6, 22659-22663.	3.6	12

#	Article	IF	CITATIONS
55	Extracting third order optical nonlinearities of Mn(III)-Phthalocyanine chloride using high repetition rate femtosecond pulses. Journal of Applied Physics, 2017, 121, 053103.	2.5	12
56	Metal induced enhancement of fluorescence and modulation of two-photon absorption cross-section with a donor–acceptor–acceptor–donor receptor. Journal of Organometallic Chemistry, 2007, 692, 4969-4977.	1.8	11
57	Structure and dynamics of optically directed self-assembly of nanoparticles. Scientific Reports, 2016, 6, 23318.	3.3	11
58	Controlling and tracking of colloidal nanostructures through two-photon fluorescence. Methods and Applications in Fluorescence, 2016, 4, 044004.	2.3	11
59	Observing ground state vibrational coherence and excited state relaxation dynamics of a cyanine dye in pure solvents. Physical Chemistry Chemical Physics, 2018, 20, 13400-13411.	2.8	11
60	Rapid programmable pulse shaping of femtosecond pulses at the MHz repetition rate. OSA Continuum, 2019, 2, 1386.	1.8	11
61	Effect of femtosecond laser pulse repetition rate on nonlinear optical properties of organic liquids. , 0, 1, e1.		11
62	High sensitive measurements of absorption coefficient and optical nonlinearities. Optics Communications, 2006, 261, 158-162.	2.1	10
63	Acyclic donor–acceptor–donor chromophores for large enhancement of two-photon absorption cross-section in the presence of Mg(II), Ca(II) or Zn(II) ions. Journal of Luminescence, 2009, 129, 256-262.	3.1	10
64	Probing the Ultrafast Solution Dynamics of a Cyanine Dye in an Organic Solvent Interfaced with Water. Journal of Physical Chemistry B, 2009, 113, 16332-16336.	2.6	10
65	Organic-inorganic hybrid halide perovskites impregnated with Group 1 and 15 elements for solar cell application. Journal of Physics and Chemistry of Solids, 2020, 144, 109518.	4.0	10
66	Adiabatic quantum computing with phase modulated laser pulses. Journal of Physics A, 2005, 38, L615-L626.	1.6	9
67	Importance of Molecular Structure on the Thermophoresis of Binary Mixtures. Journal of Physical Chemistry B, 2014, 118, 141210091038002.	2.6	9
68	Precise control and measurement of solid–liquid interfacial temperature and viscosity using dual-beam femtosecond optical tweezers in the condensed phase. Physical Chemistry Chemical Physics, 2016, 18, 25823-25830.	2.8	9
69	Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors. Physical Review E, 2016, 93, 062415.	2.1	9
70	Unraveling molecular interactions in binary liquid mixtures with time-resolved thermal-lens-spectroscopy. Journal of Molecular Liquids, 2021, 336, 116322.	4.9	9
71	Structure property correlations in alcohols through two-photon absorption cross-section measurements. Chemical Physics Letters, 2006, 430, 420-423.	2.6	8
72	A Systematic Study on Fluorescence Enhancement under Single-photon Pulsed Illumination. Journal of Fluorescence, 2009, 19, 931-937.	2.5	8

#	Article	IF	CITATIONS
73	An efficient nanocomposite based on carbon nanotubes functionalized with a fluorescent ink for ultrafast optical limiting. Materials Letters, 2011, 65, 915-917.	2.6	8
74	Effect of isotope substitution in binary liquids with Thermal-Lens spectroscopy. Chemical Physics Letters, 2014, 598, 35-38.	2.6	8
75	Dynamics of chemical bond: general discussion. Faraday Discussions, 2015, 177, 121-154.	3.2	8
76	Concentration Dependent Approach for Accurate Determination of Two-Photon Absorption Cross-Section of Fluorescent dye Molecule. Journal of Fluorescence, 2017, 27, 1399-1403.	2.5	8
77	A Dual-Signaling Ferrocene-Pyrene Dyad: Triple-Mode Recognition of the Cu(II) Ions in Aqueous Medium. Journal of Fluorescence, 2017, 27, 2279-2286.	2.5	8
78	A Sensitive Technique for Two-Photon Absorption Measurements: Towards Higher Resolution Microscopy. Journal of Physics: Conference Series, 2007, 80, 012034.	0.4	7
79	Ultrafast pulse-pair control in multiphoton fluorescence laser-scanning microscopy. Journal of Biomedical Optics, 2009, 14, 064018.	2.6	7
80	Selective suppression of two-photon fluorescence in laser scanning microscopy by ultrafast pulse-train excitation. Journal of Biomedical Optics, 2010, 15, 060502.	2.6	7
81	Towards stable trapping of single macromolecules in solution. , 2010, 7762, .		7
82	Structure and hydrogen bond vibrations of the jet-cooled 1:1 complex between 7-azaindole and formamide: A laser-induced fluorescence spectroscopy study. Chemical Physics Letters, 2011, 503, 203-209.	2.6	7
83	Direct Observation of Coherent Oscillations in Solution due to Microheterogeneous Environment. Scientific Reports, 2015, 4, 6097.	3.3	7
84	Elucidating microscopic structure and dynamics in optically tweezed environments. Chemical Physics Letters, 2015, 621, 203-208.	2.6	7
85	Comparative study of the real-time optical trapping in the Rayleigh regime for continuous and femtosecond pulsed lasers. Optics and Laser Technology, 2021, 136, 106770.	4.6	7
86	Driving wave packet recurrences with optimally modulated laser pulses. Journal of Chemical Physics, 2000, 112, 5081-5090.	3.0	6
87	Fast-frequency-hopping modulation and detection demonstration. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 1372.	2.1	6
88	Diaza-18-crown-6 based chromophores for modulation of two-photon absorption cross-section by metal ions. Journal of Organometallic Chemistry, 2008, 693, 1186-1194.	1.8	6
89	Applying genetic algorithm optimization to a folded geometry acousto-optic modulated spatial pulse shaper. Review of Scientific Instruments, 2010, 81, 013101.	1.3	6
90	Spatio-temporal control in multiphoton fluorescence laser-scanning microscopy. Proceedings of SPIE, 2010, 7569, .	0.8	6

#	Article	IF	CITATIONS
91	Investigating Two-Photon-Induced Fluorescence in Rhodamine-6G in Presence of Cetyl-Trimethyl-Ammonium-Bromide. Journal of Fluorescence, 2016, 26, 1573-1577.	2.5	6
92	Elucidating optical field directed hierarchical self-assembly of homogenous versus heterogeneous nanoclusters with femtosecond optical tweezers. PLoS ONE, 2019, 14, e0223688.	2.5	6
93	Real-time adaptive amplitude feedback in an AOM-based ultrafast optical pulse shaping system. IEEE Photonics Technology Letters, 1999, 11, 1665-1667.	2.5	5
94	Optical computing. Resonance, 2003, 8, 8-21.	0.3	5
95	Polarization-induced modulation of a femtosecond nonlinear process. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 341, 523-526.	2.1	5
96	Multiphoton coherent control in complex systems. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7, S265-S269.	1.4	5
97	Adding new dimensions to laserâ€scanning fluorescence microscopy. Journal of Microscopy, 2009, 233, 320-325.	1.8	5
98	Controlling the femtosecond laser-driven transformation of dicyclopentadiene into cyclopentadiene. Chemical Physics Letters, 2013, 558, 1-7.	2.6	5
99	Probing Intermolecular Interactions in Binary Liquid Mixtures Using Femtosecond Laser-Induced Self-Defocusing. Applied Spectroscopy, 2016, 70, 1655-1661.	2.2	5
100	Nobel Prize in Physics – 2018. Resonance, 2018, 23, 1333-1341.	0.3	5
101	Excited state absorption and relaxation dynamics in a series of heptamethine dyes under femtosecond and nanosecond excitations. Physica Scripta, 2019, 94, 095501.	2.5	5
102	Polarization induced control of optical trap potentials in binary liquids. Scientific Reports, 2019, 9, 700.	3.3	5
103	High-ratio Electro-optical Data Compression for Massive Accessing Networks Using AOM-based Ultrafast Pulse Shaping. Journal of Optical Communications, 2001, 22, .	4.7	4
104	Probing coherence aspects of adiabatic quantum computation and control. Journal of Chemical Physics, 2007, 127, 124305.	3.0	4
105	Propagation of complex shaped ultrafast pulses in highly optically dense samples. Journal of Chemical Physics, 2008, 128, 154312.	3.0	4
106	Spectrally resolved photon echo spectroscopy of Zn(II), Co(II) and Ni(II)–octaethyl porphyrins. Chemical Physics Letters, 2009, 476, 31-36.	2.6	4
107	Fluorophore discrimination by tracing quantum interference in fluorescence microscopy. Physical Review A, 2011, 83, .	2.5	4
108	Selective two-photon fluorescence suppression by ultrafast pulse-pair excitation: control by selective one-color stimulated emission. Journal of Biomedical Optics, 2011, 16, 100505.	2.6	4

#	Article	IF	CITATIONS
109	On-the-Fly Calibrated Measure and Remote Control of Temperature and Viscosity at Nanoscale. ACS Omega, 2018, 3, 12304-12311.	3.5	4
110	Two-photon fluorescence diagnostics of femtosecond laser tweezers. Current Science, 2011, 101, 935-945.	0.8	4
111	Towards spatio-temporal control in optical trapping. Proceedings of SPIE, 2009, 7400, .	0.8	3
112	A simple twist for signal enhancement in nonâ€linear optical microscopy. Journal of Microscopy, 2009, 235, 119-123.	1.8	3
113	Exploring control parameters of two photon processes in solutions#. Journal of Chemical Sciences, 2012, 124, 281-289.	1.5	3
114	Chirp and polarization control of femtosecond molecular fragmentation. Indian Journal of Physics, 2012, 86, 181-185.	1.8	3
115	Future challenges: general discussion. Faraday Discussions, 2015, 177, 517-545.	3.2	3
116	On the interferometric coherent structures in femtosecond supercontinuum generation. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	3
117	Spatiotemporal control of degenerate multiphoton fluorescence microscopy with delay-tunable femtosecond pulse pairs. Chemical Physics Letters, 2016, 657, 72-77.	2.6	3
118	pH Effect on Two-Photon Cross Section of Highly Fluorescent Dyes Using Femtosecond Two-Photon Induced Fluorescence. Journal of Fluorescence, 2017, 27, 339-356.	2.5	3
119	Two-Photon-Induced Fluorescence Study of Rhodamine-6G Dye in Different Sets of Binary Solvents. Journal of Fluorescence, 2020, 30, 1043-1048.	2.5	3
120	Achieving molecular distinction in alcohols with femtosecond thermal lens spectroscopy. Chemical Physics, 2022, 561, 111596.	1.9	3
121	ON THE PRACTICALITY OF ADIABATIC QUANTUM COMPUTING WITH OPTICAL SCHEMES. International Journal of Quantum Information, 2007, 05, 179-188.	1.1	2
122	Coded nanoscale self-assembly. Pramana - Journal of Physics, 2008, 71, 1345-1351.	1.8	2
123	Calibration of femtosecond optical tweezer as a sensitive thermometer. Proceedings of SPIE, 2015, , .	0.8	2
124	Resolution enhancement through microscopic spatiotemporal control. Faraday Discussions, 2015, 177, 203-212.	3.2	2
125	Two-Photon Fluorescence Tracking of Colloidal Clusters. Journal of Fluorescence, 2016, 26, 1271-1277.	2.5	2
126	Sensitive <i>in situ</i> nanothermometer using femtosecond optical tweezers. Journal of Nanophotonics, 2016, 10, 026013.	1.0	2

#	Article	IF	CITATIONS
127	Two Photon Spectroscopy Can Serve as a Marker of Protein Denaturation Pathway. Journal of Fluorescence, 2018, 28, 855-862.	2.5	2
128	Space Filling Curves: Heuristics For Semi Classical Lasing Computations. , 2019, , .		2
129	Understanding femtosecond optical tweezers: the critical role of nonlinear interactions. Journal of Physics: Conference Series, 2021, 1919, 012013.	0.4	2
130	Quantum Distributed Computing with Shaped Laser Pulses. , 2016, , .		2
131	Poly-lysinated nanoscale carbon probe for low power two-photon bioimaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 270, 120778.	3.9	2
132	Adiabatic Quantum Computation: Coherent Control Back Action. AIP Conference Proceedings, 2006, 864, 273-294.	0.4	1
133	Nonlinear optical properties of free standing films of PbS quantum dots in the nonresonant femtosecond regime. Proceedings of SPIE, 2007, 6639, 66390M1-66390M7.	0.8	1
134	Coherent control in multiphoton fluorescence imaging. Proceedings of SPIE, 2009, 7183, .	0.8	1
135	Study of self defocusing in liquids using single beam Z-scan with High repetition rate laser pulses. , 2012, , .		1
136	Demonstrating a nano viscometer using femtosecond laser induced photo-thermal effect. , 2015, , .		1
137	Spatiotemporal control of energy transfer in optically trapped systems. , 2015, , .		1
138	Time and Space resolved Methods: general discussion. Faraday Discussions, 2015, 177, 263-292.	3.2	1
139	Solvent Effect on Dual Fluorescence and the Corresponding Excited State Dynamics. Reviews in Fluorescence, 2018, , 145-160.	0.5	1
140	Sensitive Detection of Phase Separation with Femtosecond Thermal Lens Spectroscopy. , 2019, , .		1
141	Sensing the Molecular Properties in Methanol and its Binary Mixtures using Time-Resolved Thermal Lens Spectrometer. , 2019, , .		1
142	Manifesting the Effects of Thermal Nonlinearity in Optical Trapping for Rayleigh Regime. , 2019, , .		1
143	Experimental Comparison of Conventional and Femtosecond Optical Tweezers. , 2021, , .		1
144	Two-Dimensional Imaging of a Second-Order Nonlinear Optical Process. Current Science, 2017, 112, 830.	0.8	1

#	Article	IF	CITATIONS
145	Quantum Distributed Computing Applied to Grover's Search Algorithm. Lecture Notes in Computer Science, 2014, , 192-199.	1.3	1
146	Generation of amplified shaped pulses for highly adiabatic excitation. Springer Series in Chemical Physics, 1998, , 24-26.	0.2	1
147	Sensitive dual beam thermal lens detection of convection in methanol. , 2016, , .		1
148	Microrheology Study of Aqueous Suspensions of Laponite using Femtosecond Optical Tweezers. , 2017, , .		1
149	Molecular Size and Mass Sensitive Femtosecond Thermal Spectrometer. , 2019, , .		1
150	Detecting in-situ phase separation with Femtosecond thermal lens spectroscopy to map COVID-19 transmission. , 2021, , .		1
151	Microscopic probing of two-photon fluorescence for cancer diagnosis. Current Science, 2011, 100, 294-295.	0.8	1
152	Understanding the Photothermal Response of CBNP Nanofluids Using Thermal Lens Spectroscopic Techniques. , 2021, , .		1
153	Sensing non-ideal microheterogeneity in binary mixtures of dimethyl sulfoxide and water. Journal of Optics (United Kingdom), 2022, 24, 054001.	2.2	1
154	Investigating the effects of intermolecular interactions on nonlinear optical properties of binary mixtures with high repetition rate femtosecond laser pulses. PeerJ Physical Chemistry, 0, 4, e23.	0.0	1
155	<title>Optical-wavelength-domain code division multiplexing using an AOM-based ultrafast optical pulse-shaping approach</title> . , 1998, 3531, 80.		0
156	Decoherence control in quantum computing with simple chirped pulses. Pramana - Journal of Physics, 2002, 59, 235-242.	1.8	0
157	Quantum computation with ultrafast laser pulse shaping. Resonance, 2005, 10, 8-14.	0.3	Ο
158	Dependence of adiabatic population transfer on pulse profile. Pramana - Journal of Physics, 2006, 66, 999.	1.8	0
159	Three-dimensional image formation under single-photon ultra-short pulsed illumination. Proceedings of SPIE, 2009, 7378, .	0.8	0
160	Towards using molecular ions as qubits: Femtosecond control of molecular fragmentation with multiple knobs. Pramana - Journal of Physics, 2010, 75, 1065-1069.	1.8	0
161	Control of femtosecond laser driven retro-Diels-Alder-like reaction of dicyclopentadiene. Proceedings of SPIE, 2010, 8173,	0.8	0
162	Spectrally resolved femtosecond photon echo spectroscopy of astaxanthin. Proceedings of SPIE, 2010, 8173, .	0.8	0

#	Article	IF	CITATIONS
163	Thermal-Lens spectroscopy in binary liquids mixtures. , 2010, , .		О
164	Spatio-Temporal Control in Multiphoton Fluorescence Laser-Scanning Microscopy. Biophysical Journal, 2010, 98, 586a.	0.5	0
165	Thermal-Lens Spectroscopy in Binary Liquids Mixtures: Effect of Isotope Substitution. , 2011, , .		0
166	Towards Using Molecular States as Qubits. , 2011, 1384, 251-253.		0
167	Fluorescence advantages with microscopic spatiotemporal control. Proceedings of SPIE, 2013, , .	0.8	Ο
168	Exploring the critical role of detection aperture in thermal lens measurements. , 2015, , .		0
169	Sensing near the liquid:liquid interface remotely via ultrafast pump probe study. , 2015, , .		О
170	Effect of zinc substitution on molecular dynamics of protoporphyrin-IX. Indian Journal of Physics, 2015, 89, 1183-1192.	1.8	0
171	Local and Global Dynamics: general discussion. Faraday Discussions, 2015, 177, 381-403.	3.2	О
172	Measurement constraints in laser based thermal lens experiments. Proceedings of SPIE, 2015, , .	0.8	0
173	Controlling the effect on solvent by resonant excitation in femtosecond optical tweezer. , 2015, , .		0
174	Two-photon Absorption Cross Sections in a Dual-signaling Ferrocene-pyrene Conjugate. , 2016, , .		0
175	Reverse Saturable Absorption followed by Anomalous Saturable Absorption in Rhodamine-700. , 2016, ,		Ο
176	Temperature control and measurement with tunable femtosecond optical tweezers. Proceedings of SPIE, 2016, , .	0.8	0
177	Precise Control and Measurement of Temperature with Femtosecond Optical Tweezers. Biophysical Journal, 2016, 110, 500a.	0.5	Ο
178	In situ temperature control and measurement with femtosecond optical tweezers: offering biomedical application. Proceedings of SPIE, 2017, , .	0.8	0
179	Structured interferometry features in femtosecond supercontinuum: towards better understanding of supercontinuum for bio applications. , 2017, , .		0
180	Femtosecond Laser-Induced Photothermal Effect for Nanoscale Viscometer and Thermometer. IITK Directions, 2018, , 13-17.	0.2	0

#	Article	IF	CITATIONS
181	Spectrally resolved photon-echo spectroscopy of CdSe quantum dots at far from resonance excitation condition (S) (S) (A) ournal of Chemical Sciences, 2018, 130, 1.	1.5	0
182	Study of Starch Using Bright Field and Polarized Light Microscopy. , 2019, , .		0
183	Qubit Network Barriers to Deep Learning. , 2019, , .		0
184	Thermal Inflection Study of Methanol-Hexane Mixtures using Time-Resolved Thermal Lens Technique. , 2019, , .		0
185	On the spatiotemporal control with a single beam femtosecond optical tweezer. , 2021, , .		0
186	Semi-Supervised Approaches to Ultrafast Pulse Shaping. Springer Proceedings in Physics, 2021, , 747-749.	0.2	0
187	Using Femtosecond Coherent Oscillations to Unravel Dynamics of Complex Systems. Springer Proceedings in Physics, 2021, , 59-61.	0.2	0
188	Modern Perspective on Coherent Control. Advances in Multi-photon Processes and Spectroscopy, 2000, , 129-221.	0.6	0
189	Multiphoton Control with Ultrafast Pulse Shaping. , 2001, , .		0
190	Novel Femtosecond Setup for High Sensitive Absorption Coefficient and Optical Nonlinearities Measurements. , 2002, , .		0
191	ULTRAFAST PULSE SHAPING DEVELOPMENTS FOR QUANTUM COMPUTATION. , 2006, , .		0
192	Time Comb Pulses Through Ultrafast Pulse Shaping. , 2007, , .		0
193	Femtosecond Spatiotemporal Control with Multiple Knobs. , 2010, , .		0
194	Hot Chemistry with Cold Molecules. , 0, , .		0
195	Polarization modulated Ultrafast Pulse-Pair Control in Two-Photon Fluorescence Microscopy. , 2011, ,		0
196	Insignificance of Relative Time delay between Photons for a Ultrafast Two-photon Process. , 2012, , .		0
197	Highly Nonlinear Femtosecond Processes in Liquid Phase: Water Cluster Raman Spectra and Microheterogeneity Induced Coherent Oscillations. , 2014, , .		0
198	Importance of Hydrogen Bonding in Thermal Lens Study of Highly Absorbing Liquids. , 2015, , .		0

#	Article	IF	CITATIONS
199	Characterization of optically field directed self-assembly of colloidal clusters using femtosecond optical tweezers. , 2016, , .		0
200	Elucidating Two Photon FRET and its application through femtosecond optical tweezers. , 2016, , .		0
201	Femtosecond optical tweezers as sensitive nano-thermometer. , 2016, , .		0
202	Direct Observation of Diatoms Pair Formation in Aqueous Solution Under Laser Scanning Fluorescence Microscopy. , 2016, , .		0
203	Femtosecond Laser Induced Spatiotemporal Control for Remote Sensing and Computation at Nanoscale. , 2019, , .		0
204	Visualizing colloidal aggregation with femtosecond optical tweezers. , 2019, , .		0
205	Nicolaas Bloembergen (1920–2017). Resonance, 2020, 25, 1653-1657.	0.3	0
206	Sensing the insensible using optical schemes: converting the maze problem into a quantum search problem. , 2020, , .		0
207	Nanocomputing. , 2008, , 215-265.		0
208	Effect of linear chirp on femtosecond two-photon processes in solution. Journal of Spectroscopy and Dynamics, 2012, 2, .	0.0	0
209	Probing solvent dependent femtosecond transient coherent oscillations to reveal interfacial dynamics. Journal of Optics (United Kingdom), 0, , .	2.2	0
210	Title is missing!. , 2019, 14, e0223688.		0
211	Title is missing!. , 2019, 14, e0223688.		0
212	Title is missing!. , 2019, 14, e0223688.		0
213	Title is missing!. , 2019, 14, e0223688.		0
214	Title is missing!. , 2019, 14, e0223688.		0
215	Title is missing!. , 2019, 14, e0223688.		0