Jason T Yustein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3378230/publications.pdf Version: 2024-02-01

IASON T YUSTEIN

#	Article	IF	CITATIONS
1	K-Ras and p53 mouse model with molecular characteristics of human rhabdomyosarcoma and translational applications. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	10
2	Hereditary retinoblastoma iPSC model reveals aberrant spliceosome function driving bone malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117857119.	7.1	13
3	Abstract 704: Development of a patient-derived xenograft (PDX) modeling program to enable pediatric precision medicine. Cancer Research, 2022, 82, 704-704.	0.9	0
4	Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. Biosensors, 2022, 12, 478.	4.7	10
5	Targeting PAK4 Inhibits Ras-Mediated Signaling and Multiple Oncogenic Pathways in High-Risk Rhabdomyosarcoma. Cancer Research, 2021, 81, 199-212.	0.9	20
6	Engineering oncolytic vaccinia virus to redirect macrophages to tumor cells. Advances in Cell and Gene Therapy, 2021, 4, e99.	0.9	10
7	p21-activated kinases as viable therapeutic targets for the treatment of high-risk Ewing sarcoma. Oncogene, 2021, 40, 1176-1190.	5.9	10
8	Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8+ T cells. Journal of Clinical Investigation, 2021, 131, .	8.2	66
9	Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell and Bioscience, 2021, 11, 94.	4.8	34
10	Overcoming PD-1 Inhibitor Resistance with a Monoclonal Antibody to Secreted Frizzled-Related Protein 2 in Metastatic Osteosarcoma. Cancers, 2021, 13, 2696.	3.7	6
11	Abstract 405: The role of GALNT14 in chemoresistant and metastatic osteosarcoma. , 2021, , .		0
12	Upregulation of miR181a/miR212 Improves Myogenic Commitment in Murine Fusion-Negative Rhabdomyosarcoma. Frontiers in Physiology, 2021, 12, 701354.	2.8	6
13	Recent Insights into Therapy Resistance in Osteosarcoma. Cancers, 2021, 13, 83.	3.7	57
14	Nanodelivery Systems Face Challenges and Limitations in Bone Diseases Management. Advanced Therapeutics, 2021, 4, 2100152.	3.2	3
15	Imatinib revives the therapeutic potential of metformin on ewing sarcoma by attenuating tumor hypoxic response and inhibiting convergent signaling pathways. Cancer Letters, 2020, 469, 195-206.	7.2	13
16	Reproducible and Characterized Method for Ponatinib Encapsulation into Biomimetic Lipid Nanoparticles as a Platform for Multi-Tyrosine Kinase-Targeted Therapy. ACS Applied Bio Materials, 2020, 3, 6737-6745.	4.6	21
17	Generation of patientâ€derived tumor xenografts from percutaneous tumor biopsies in children with bone sarcomas. Pediatric Blood and Cancer, 2019, 66, e27579.	1.5	18
18	Development of a Novel Humanized Monoclonal Antibody to Secreted Frizzled-Related Protein-2 That Inhibits Triple-Negative Breast Cancer and Angiosarcoma Growth In Vivo. Annals of Surgical Oncology, 2019, 26, 4782-4790.	1.5	8

JASON T YUSTEIN

#	Article	IF	CITATIONS
19	Emerging novel agents for patients with advanced Ewing sarcoma: a report from the Children's Oncology Group (COG) New Agents for Ewing Sarcoma Task Force. F1000Research, 2019, 8, 493.	1.6	57
20	Tegavivint and the β-Catenin/ALDH Axis in Chemotherapy-Resistant and Metastatic Osteosarcoma. Journal of the National Cancer Institute, 2019, 111, 1216-1227.	6.3	69
21	MicroRNA-509-3p inhibits cellular migration, invasion, and proliferation, and sensitizes osteosarcoma to cisplatin. Scientific Reports, 2019, 9, 19089.	3.3	26
22	Long non-coding RNAs regulation of therapeutic resistance. , 2019, 2, 550-567.		1
23	InÂVitro and InÂVivo Characterization of a Preclinical Irradiation-Adapted Model for Ewing Sarcoma. International Journal of Radiation Oncology Biology Physics, 2018, 101, 118-127.	0.8	5
24	Detection of Plasma MicroRNA Signature in Osteosarcoma Patients. Methods in Molecular Biology, 2018, 1699, 113-118.	0.9	1
25	Transglutaminase-2 promotes metastatic and stem-like phenotypes in osteosarcoma. American Journal of Cancer Research, 2018, 8, 1752-1763.	1.4	4
26	Fluorinated Eu ^{II} -based multimodal contrast agent for temperature- and redox-responsive magnetic resonance imaging. Chemical Science, 2017, 8, 8345-8350.	7.4	60
27	miRâ€∃ 30b directly targets ARHGAP1 to drive activation of a metastatic CDC42â€₽AK1â€AP1 positive feedback loop in Ewing sarcoma. International Journal of Cancer, 2017, 141, 2062-2075.	5.1	43
28	Cancer's Achilles' Heel: Apoptosis and Necroptosis to the Rescue. International Journal of Molecular Sciences, 2017, 18, 23.	4.1	64
29	Biomarker significance of plasma and tumor miR-21, miR-221, and miR-106a in osteosarcoma. Oncotarget, 2017, 8, 96738-96752.	1.8	41
30	Metabolic modulation of Ewing sarcoma cells inhibits tumor growth and stem cell properties. Oncotarget, 2017, 8, 77292-77308.	1.8	21
31	Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. Journal of Clinical Investigation, 2016, 126, 2678-2688.	8.2	90
32	Secreted Frizzled-Related Protein 2 (sFRP2) promotes osteosarcoma invasion and metastatic potential. BMC Cancer, 2016, 16, 869.	2.6	40
33	Crossâ€species identification of a plasma microRNA signature for detection, therapeutic monitoring, and prognosis in osteosarcoma. Cancer Medicine, 2015, 4, 977-988.	2.8	69
34	Coamplification of <scp><i>M</i></scp> <i>yc</i> / <scp><i>P</i></scp> <i>vt1</i> and homozygous deletion of <scp><i>N</i></scp> <i>lrp1</i> locus are frequent genetics changes in mouse osteosarcoma. Genes Chromosomes and Cancer, 2015, 54, 796-808.	2.8	15
35	Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis. British Journal of Cancer, 2015, 113, 1289-1297.	6.4	24
36	The Adolescent and Young Adult with Cancer: State of the Art - Bone Tumors. Current Oncology Reports, 2013, 15, 296-307.	4.0	90

JASON T YUSTEIN

#	Article	IF	CITATIONS
37	Proteoglycan 4 Expression Protects Against the Development of Osteoarthritis. Science Translational Medicine, 2013, 5, 176ra34.	12.4	156
38	Abdominal undifferentiated small round cell tumor with unique translocation (X;19)(q13;q13.3). Pediatric Blood and Cancer, 2010, 54, 1041-1044.	1.5	4
39	High ALDH Activity Identifies Chemotherapy-Resistant Ewing's Sarcoma Stem Cells That Retain Sensitivity to EWS-FL11 Inhibition. PLoS ONE, 2010, 5, e13943.	2.5	130
40	Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3534-3539.	7.1	47
41	The interplay between MYC and HIF in cancer. Nature Reviews Cancer, 2008, 8, 51-56.	28.4	535
42	Biology and treatment of Burkitt's lymphoma. Current Opinion in Hematology, 2007, 14, 375-381.	2.5	74
43	Global mapping of c-Myc binding sites and target gene networks in human B cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17834-17839.	7.1	462
44	Myc Stimulates Nuclearly Encoded Mitochondrial Genes and Mitochondrial Biogenesis. Molecular and Cellular Biology, 2005, 25, 6225-6234.	2.3	527
45	Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38. Oncogene, 2003, 22, 6129-6141.	5.9	39
46	Poly(ADP-Ribose) Polymerase 1 and Ste20-Like Kinase hKFC Act as Transcriptional Repressors for Gamma-2 Herpesvirus Lytic Replication. Molecular and Cellular Biology, 2003, 23, 8282-8294.	2.3	75
47	KFC, a Ste20-like kinase with mitogenic potential and capability to activate the SAPK/JNK pathway. Oncogene, 2000, 19, 710-718.	5.9	19
48	Tyrosine Kinase Expression Profiles of Chicken Erythro- Progenitor Cells and Oncogene- Transformed Erythroblasts. Journal of Biomedical Science, 1998, 5, 93-100.	7.0	10
49	Reactions of Pulsed-Laser-Evaporated Thallium Atoms with O2. Matrix Infrared Spectra of New TlO2 Species. Trends in Group 13 Dioxides and Dioxide Anions. Journal of Physical Chemistry A, 1997, 101, 9077-9084.	2.5	15
50	Reactions of pulsed-laser evaporated lithium atoms with O2 and N2O. Chemical Physics, 1994, 189, 343-349.	1.9	15
51	Pulsed laser evaporation of boron/carbon pellets: Infrared spectra and quantum chemical structures and frequencies for BC2. Journal of Chemical Physics, 1993, 99, 12-17.	3.0	43
52	Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen. Journal of Chemical Physics, 1993, 98, 6070-6074.	3.0	117