
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3377798/publications.pdf Version: 2024-02-01

ΔΤΠΟΗΙ ΠΟΗΙΜΑΡΙΙ

#	Article	IF	CITATIONS
1	Intersexual flower differences in an andromonoecious species: small pollenâ€rich staminate flowers under resource limitation. Plant Biology, 2022, 24, 259-265.	1.8	2
2	Horizontal orientation facilitates pollen transfer and rain damage avoidance in actinomorphic flowers of <i>Platycodon grandiflorus</i> . Plant Biology, 2022, 24, 798-805.	1.8	5
3	Valuing the cultural services from urban blueâ€space ecosystems in Japanese megacities during the <scp>COVID</scp> â€19 pandemic. People and Nature, 2022, 4, 1176-1189.	1.7	8
4	The effects of temporal continuities of grasslands on the diversity and species composition of plants. Ecological Research, 2021, 36, 24-31.	0.7	10
5	Evaluation of sampling effort required to assess pollen species richness on pollinators using rarefaction. Applications in Plant Sciences, 2021, 9, e11411.	0.8	2
6	Covering and shading by neighbouring plants diminish pollinator visits to and reproductive success of a forest edge specialist dwarf species. Plant Biology, 2021, 23, 711-718.	1.8	5
7	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	1.1	34
8	The ecoâ€evolutionary dynamics of prior selfing rates promote coexistence without niche partitioning under conditions of reproductive interference. Journal of Ecology, 2021, 109, 3916-3928.	1.9	6
9	Multiplex real-time PCR enables the simultaneous detection of environmental DNA from freshwater fishes: a case study of three exotic and three threatened native fishes in Japan. Biological Invasions, 2020, 22, 455-471.	1.2	18
10	Grasslands and Shrublands of Japan. , 2020, , 785-799.		3
11	Nature-oriented park use of satoyama ecosystems can enhance biodiversity conservation in urbanized landscapes. Landscape and Ecological Engineering, 2020, 16, 163-172.	0.7	8
11	Nature-oriented park use of satoyama ecosystems can enhance biodiversity conservation in urbanized landscapes. Landscape and Ecological Engineering, 2020, 16, 163-172. Seasonal monitoring of Hida salamander Hynobius kimurae using environmental DNA with a genus-specific primer set. Endangered Species Research, 2020, 43, 341-352.	0.7	8
	landscapes. Landscape and Ecological Engineering, 2020, 16, 163-172. Seasonal monitoring of Hida salamander Hynobius kimurae using environmental DNA with a		
12	landscapes. Landscape and Ecological Engineering, 2020, 16, 163-172. Seasonal monitoring of Hida salamander Hynobius kimurae using environmental DNA with a genus-specific primer set. Endangered Species Research, 2020, 43, 341-352. The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study.	1.2	10
12 13	 landscapes. Landscape and Ecological Engineering, 2020, 16, 163-172. Seasonal monitoring of Hida salamander Hynobius kimurae using environmental DNA with a genus-specific primer set. Endangered Species Research, 2020, 43, 341-352. The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study. Annals of Botany, 2019, 123, 311-325. Development of microsatellite markers for the annual andromonoecious herb <i>Commelina</i> 	1.2 1.4	10 53
12 13 14	 landscapes. Landscape and Ecological Engineering, 2020, 16, 163-172. Seasonal monitoring of Hida salamander Hynobius kimurae using environmental DNA with a genus-specific primer set. Endangered Species Research, 2020, 43, 341-352. The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study. Annals of Botany, 2019, 123, 311-325. Development of microsatellite markers for the annual andromonoecious herb <i>Commelina communis</i> f. <i>ci>ciliata</i> (Commelinaceae). Genes and Genetic Systems, 2019, 94, 133-138. Does sexual dimorphism exist in flowering phenology traits in anemophilous dioecious species? A test 	1.2 1.4 0.2	10 53 0
12 13 14 15	Iandscapes. Landscape and Ecological Engineering, 2020, 16, 163-172. Seasonal monitoring of Hida salamander Hynobius kimurae using environmental DNA with a genus-specific primer set. Endangered Species Research, 2020, 43, 341-352. The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study. Annals of Botany, 2019, 123, 311-325. Development of microsatellite markers for the annual andromonoecious herb <i>Commelina communis Communis Development of microsatellite markers for the annual andromonoecious herb <i>Commelina communis Does sexual dimorphism exist in flowering phenology traits in anemophilous dioecious species? A test with <i>Rumex acetosa Prior selfing can mitigate the negative effects of mutual reproductive interference between</i></i></i>	1.2 1.4 0.2 0.8	10 53 0 4

#	Article	IF	CITATIONS
19	Urbanization promotes the loss of seasonal dynamics in the semi-natural grasslands of an East Asian megacity. Basic and Applied Ecology, 2018, 29, 1-11.	1.2	23
20	The influence of subjective perceptions on the valuation of green spaces in Japanese urban areas. Urban Forestry and Urban Greening, 2018, 34, 166-174.	2.3	18
21	Low functional diversity promotes niche changes in natural island pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162218.	1.2	21
22	Functional significance of petals as landing sites in fungusâ€gnat pollinated flowers of <i>Mitella pauciflora</i> (Saxifragaceae). Functional Ecology, 2017, 31, 1193-1200.	1.7	16
23	Effect of different personal histories on valuation for forest ecosystem services in urban areas: A case study of Mt. Rokko, Kobe, Japan. Urban Forestry and Urban Greening, 2017, 28, 110-117.	2.3	11
24	Rediscovery of <i>Celes akitanus</i> (Orthoptera: Acrididae) from semiâ€natural grasslands in Japan. Entomological Science, 2016, 19, 89-96.	0.3	4
25	Plant and herbivorous insect diversity loss are greater than null model expectations due to land-use changes in agro-ecosystems. Biological Conservation, 2016, 201, 270-276.	1.9	13
26	Traditional burning and mowing practices support high grassland plant diversity by providing intermediate levels of vegetation height and soil pH. Applied Vegetation Science, 2016, 19, 567-577.	0.9	21
27	Threatened herbivorous insects maintained by long-term traditional management practices in semi-natural grasslands. Agriculture, Ecosystems and Environment, 2016, 221, 156-162.	2.5	37
28	Timing of mowing influences genetic diversity and reproductive success in endangered semi-natural grassland plants. Agriculture, Ecosystems and Environment, 2016, 221, 20-27.	2.5	22
29	Adaptive movement and food-chain dynamics: towards food-web theory without birth–death processes. Theoretical Ecology, 2016, 9, 15-25.	0.4	5
30	Low flowerâ€size variation in bilaterally symmetrical flowers: Support for the pollination precision hypothesis. American Journal of Botany, 2015, 102, 2032-2040.	0.8	21
31	A basinâ€scale application of environmental <scp>DNA</scp> assessment for rare endemic species and closely related exotic species in rivers: a case study of giant salamanders in Japan. Journal of Applied Ecology, 2015, 52, 358-365.	1.9	173
32	Sexual dimorphism in floral longevity and flowering synchrony in relation to pollination and mating success in three dioecious llex species. American Journal of Botany, 2015, 102, 1187-1197.	0.8	10
33	Land abandonment and intensification diminish spatial and temporal βâ€diversity of grassland plants and herbivorous insects within paddy terraces. Journal of Applied Ecology, 2015, 52, 1033-1043.	1.9	41
34	Plant betaâ€diversity is enhanced around grassland–forest edges within a traditional agricultural landscape. Applied Vegetation Science, 2015, 18, 493-502.	0.9	12
35	Does Urbanization Promote Floral Diversification? Implications from Changes in Herkogamy with Pollinator Availability in an Urban-Rural Area. American Naturalist, 2014, 184, 258-267.	1.0	34
36	Biodiversity declines due to abandonment and intensification of agricultural lands: patterns and mechanisms. Ecological Monographs, 2014, 84, 637-658.	2.4	165

#	Article	IF	CITATIONS
37	Plant species' coexistence relationships may shift according to life history traits and seasons. Plant Ecology, 2014, 215, 597-612.	0.7	2
38	The effect of predation risk on spider's decisions on web-site relocation. Behaviour, 2013, 150, 103-114.	0.4	7
39	Topography―and managementâ€mediated resource gradients maintain rare and common plant diversity around paddy terraces. Ecological Applications, 2013, 23, 1357-1366.	1.8	29
40	Development of ten microsatellite markers for Arisaema minus (Araceae), a vulnerable Japanese herb species. Conservation Genetics Resources, 2012, 4, 495-497.	0.4	0
41	Inflorescence architecture affects pollinator behaviour and mating success in <i>Spiranthes sinensis</i> (Orchidaceae). New Phytologist, 2012, 193, 196-203.	3.5	52
42	Bagging GLM: Improved generalized linear model for the analysis of zero-inflated data. Ecological Informatics, 2011, 6, 270-275.	2.3	20
43	Paddy-associated frog declines via urbanization: A test of the dispersal-dependent-decline hypothesis. Landscape and Urban Planning, 2011, 103, 318-325.	3.4	37
44	A theoretical framework for resource translocation during sexual reproduction in modular organisms. Evolutionary Ecology, 2011, 25, 885-898.	0.5	1
45	The role of river confluences and meanderings in preserving local hot spots for threatened plant species in riparian ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 2011, 21, 358-363.	0.9	13
46	Abandonment and intensified use of agricultural land decrease habitats of rare herbs in semi-natural grasslands. Agriculture, Ecosystems and Environment, 2010, 135, 304-309.	2.5	94
47	Restoration of floating mat bog vegetation after eutrophication damages by improving water quality in a small pond. Limnology, 2010, 11, 289-297.	0.8	8
48	River confluences enhance riparian plant species diversity. Plant Ecology, 2010, 209, 95-108.	0.7	20
49	Differences in distribution patterns around river confluences among hydrophilic vegetation groups. Ecological Research, 2010, 25, 1161-1169.	0.7	5
50	Enhanced Diversity at Network Nodes: River Confluences Increase Vegetation-Patch Diversity~!2010-03-22~!2010-04-30~!2010-07-07~!. Open Ecology Journal, 2010, 3, 48-58.	2.0	9
51	Flower orientation enhances pollen transfer in bilaterally symmetrical flowers. Oecologia, 2009, 160, 667-674.	0.9	75
52	Allochthonous prey subsidies provide an asymmetric growth benefit to invasive bluegills over native cyprinids under the competitive conditions in a pond. Biological Invasions, 2009, 11, 1347-1355.	1.2	2
53	The effects of human management on spatial distribution of two bumble bee species in a traditional agro-forestry <i>Satoyama</i> landscape Journal of Apicultural Research, 2008, 47, 296-303.	0.7	11
54	The effects of human management on spatial distribution of two bumble bee species in a traditional agro-forestry Satoyama landscape. Journal of Apicultural Research, 2008, , 296-303.	0.7	5

#	Article	IF	CITATIONS
55	Colored floral organs influence pollinator behavior and pollen transfer in <i>Commelina communis</i> (Commelinaceae). American Journal of Botany, 2007, 94, 249-258.	0.8	59
56	Flower orientation on slopes in the mycoâ€heterotrophic species <i>Monotropastrum globosum</i> . Plant Species Biology, 2007, 22, 161-166.	0.6	6
57	Flowers adaptively face down-slope in 10 forest-floor herbs. Functional Ecology, 2006, 20, 585-591.	1.7	25
58	Difference in Web Construction Behavior at Newly Occupied Web Sites Between Two Cyclosa Species. Ethology, 2004, 110, 397-411.	0.5	26
59	The influence of floral symmetry and pollination systems on flower size variation. Nordic Journal of Botany, 2004, 24, 593-598.	0.2	13
60	Title is missing!. Journal of Insect Behavior, 2003, 16, 371-380.	0.4	15
61	Effect of floral organ sizes on female reproductive success inErythronium japonicum (Liliaceae). Journal of Plant Biology, 2003, 46, 245-249.	0.9	1
62	Floral correlations in an andromonoecious species, Commelina communis (Commelinaceae). Plant Species Biology, 2003, 18, 103-106.	0.6	14
63	A Quantitative Analysis of Geographic Color Variation in Two Geotrupes Dung Beetles. Zoological Science, 2002, 19, 351-358.	0.3	5
64	Large variation in flower size of the myco-heterotrophic plant, Monotropastrum globosum: effect of floral display on female reproductive success. Plant Species Biology, 2002, 17, 147-153.	0.6	9
65	Sex change in tree species: long-term monitoring of sex expression in Acer rufinerve. Nordic Journal of Botany, 2001, 21, 397-399.	0.2	11
66	Evolution of Flower Allometry and Its Significance for Pollination Success in the Deceptive Orchid Pogonia japonica. International Journal of Plant Sciences, 2001, 162, 1307-1311.	0.6	28
67	Variation of breeding system, floral rewards, and reproductive success in clonalCalystegiaspecies (Convolvulaceae). American Journal of Botany, 1999, 86, 436-446.	0.8	29
68	Feeding experience affects web relocation and investment in web threads in an orb-web spider, Cyclosa argenteoalba. Animal Behaviour, 1999, 57, 1251-1255.	0.8	61
69	Variation of breeding system, floral rewards, and reproductive success in clonal Calystegia species (Convolvulaceae). American Journal of Botany, 1999, 86, 436-46.	0.8	4
70	Development of environmental DNA detection assays for snakes in paddy fields in Japan. Landscape and Ecological Engineering, 0, , 1.	0.7	1