Paula E Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3377594/publications.pdf

Version: 2024-02-01

101543 155660 5,915 57 36 citations h-index papers

55 g-index 64 64 64 5563 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multiple 9-1-1 complexes promote homolog synapsis, DSB repair, and ATR signaling during mammalian meiosis. ELife, 2022, 11 , .	6.0	7
2	Phosphoproteomics of ATR signaling in mouse testes. ELife, 2022, 11, .	6.0	12
3	Somatic CAG expansion in Huntington's disease is dependent on the MLH3 endonuclease domain, which can be excluded via splice redirection. Nucleic Acids Research, 2021, 49, 3907-3918.	14.5	20
4	Cyclin N-Terminal Domain-Containing-1 Coordinates Meiotic Crossover Formation with Cell-Cycle Progression in a Cyclin-Independent Manner. Cell Reports, 2020, 32, 107858.	6.4	20
5	A mutation in the endonuclease domain of mouse MLH3 reveals novel roles for $MutL\hat{I}^3$ during crossover formation in meiotic prophase I. PLoS Genetics, 2019, 15, e1008177.	3.5	25
6	Dynamic transcriptome profiles within spermatogonial and spermatocyte populations during postnatal testis maturation revealed by single-cell sequencing. PLoS Genetics, 2019, 15, e1007810.	3.5	80
7	Mutation of the ATPase Domain of MutS Homolog-5 (MSH5) Reveals a Requirement for a Functional MutSÎ ³ Complex for All Crossovers in Mammalian Meiosis. G3: Genes, Genomes, Genetics, 2019, 9, 1839-1850.	1.8	19
8	Characterization of telomeric repeat-containing RNA (TERRA) localization and protein interactions in primordial germ cells of the mouseâ€. Biology of Reproduction, 2019, 100, 950-962.	2.7	9
9	Transcriptome profiling of the developing male germ line identifies the miR-29 family as a global regulator during meiosis. RNA Biology, 2017, 14, 219-235.	3.1	21
10	NIMA-related kinase 1 (NEK1) regulates meiosis I spindle assembly by altering the balance between $\hat{l}\pm$ -Adducin and Myosin X. PLoS ONE, 2017, 12, e0185780.	2.5	16
11	Special issue on "recent advances in meiotic chromosome structure, recombination and segregation― Chromosoma, 2016, 125, 173-175.	2.2	3
12	Control of Meiotic Crossovers: From Double-Strand Break Formation to Designation. Annual Review of Genetics, 2016, 50, 175-210.	7.6	311
13	Cohesin Removal along the Chromosome Arms during the First Meiotic Division Depends on a NEK1-PP1 \hat{i}^3 -WAPL Axis in the Mouse. Cell Reports, 2016, 17, 977-986.	6.4	31
14	Chromosome Cohesion Established by Rec8-Cohesin in Fetal Oocytes Is Maintained without Detectable Turnover in Oocytes Arrested for Months in Mice. Current Biology, 2016, 26, 678-685.	3.9	92
15	FancJ (Brip1) loss-of-function allele results in spermatogonial cell depletion during embryogenesis and altered processing of crossover sites during meiotic prophase I in mice. Chromosoma, 2016, 125, 237-252.	2.2	33
16	Double trouble in human aneuploidy. Nature Genetics, 2015, 47, 696-698.	21.4	10
17	<i>Dgcr8</i> and <i>Dicer</i> are essential for sex chromosome integrity during meiosis in males. Journal of Cell Science, 2015, 128, 2314-2327.	2.0	47
18	Mammalian CNTD1 is critical for meiotic crossover maturation and deselection of excess precrossover sites. Journal of Cell Biology, 2014, 205, 633-641.	5.2	80

#	Article	IF	CITATIONS
19	Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nature Genetics, 2014, 46, 194-199.	21.4	172
20	RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nature Genetics, 2013, 45, 269-278.	21.4	231
21	SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors. Genes and Development, 2013, 27, 749-766.	5.9	73
22	Genetic Recombination Is Targeted towards Gene Promoter Regions in Dogs. PLoS Genetics, 2013, 9, e1003984.	3.5	198
23	Mismatch Repair Genes Mlh1 and Mlh3 Modify CAG Instability in Huntington's Disease Mice: Genome-Wide and Candidate Approaches. PLoS Genetics, 2013, 9, e1003930.	3.5	175
24	Conditional Inactivation of the DNA Damage Response Gene Hus1 in Mouse Testis Reveals Separable Roles for Components of the RAD9-RAD1-HUS1 Complex in Meiotic Chromosome Maintenance. PLoS Genetics, 2013, 9, e1003320.	3.5	48
25	Nonâ€human primates exhibit errors in meiosis I. Molecular Reproduction and Development, 2012, 79, 665-665.	2.0	0
26	AGO4 Regulates Entry into Meiosis and Influences Silencing of Sex Chromosomes in the Male Mouse Germline. Developmental Cell, 2012, 23, 251-264.	7.0	88
27	NEK1 Facilitates Cohesin Removal during Mammalian Spermatogenesis. Genes, 2011, 2, 260-279.	2.4	15
28	Mammalian BTBD12 (SLX4) Protects against Genomic Instability during Mammalian Spermatogenesis. PLoS Genetics, 2011, 7, e1002094.	3.5	65
29	Mammalian BLM helicase is critical for integrating multiple pathways of meiotic recombination. Journal of Cell Biology, 2010, 188, 779-789.	5.2	75
30	Predicting Gene Networks in Human Oocyte Meiosis. Biology of Reproduction, 2010, 82, 469-472.	2.7	20
31	Reproduction in Men with Klinefelter Syndrome: The Past, the Present, and the Future. Seminars in Reproductive Medicine, 2009, 27, 137-148.	1.1	71
32	Analysis of meiotic prophase I in live mouse spermatocytes. Chromosome Research, 2008, 16, 743-760.	2.2	24
33	Distinct effects of the recurrent Mlh1 ^{G67R} mutation on MMR functions, cancer, and meiosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4247-4252.	7.1	39
34	Ubiquitylated PCNA plays a role in somatic hypermutation and class-switch recombination and is required for meiotic progression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16248-16253.	7.1	99
35	Distinct Functions of MLH3 at Recombination Hot Spots in the Mouse. Genetics, 2008, 178, 1937-1945.	2.9	56
36	MUS81 Generates a Subset of MLH1-MLH3–Independent Crossovers in Mammalian Meiosis. PLoS Genetics, 2008, 4, e1000186.	3.5	164

#	Article	IF	Citations
37	Comparative Analysis of Meiotic Progression in Female Mice Bearing Mutations in Genes of the DNA Mismatch Repair Pathway1. Biology of Reproduction, 2008, 78, 462-471.	2.7	40
38	Small RNAs and RNAi pathways in meiotic prophase I. Chromosome Research, 2007, 15, 653-665.	2.2	11
39	A role for Mlh3 in somatic hypermutation. DNA Repair, 2006, 5, 675-682.	2.8	22
40	Localization of MMR proteins on meiotic chromosomes in mice indicates distinct functions during prophase I. Journal of Cell Biology, 2005, 171, 447-458.	5.2	123
41	Extreme Heterogeneity in the Molecular Events Leading to the Establishment of Chiasmata during Meiosis I in Human Oocytes. American Journal of Human Genetics, 2005, 76, 112-127.	6.2	151
42	Mismatch repair proteins, meiosis, and mice: understanding the complexities of mammalian meiosis. Experimental Cell Research, 2004, 296, 71-79.	2.6	66
43	Essential Role of Fkbp6 in Male Fertility and Homologous Chromosome Pairing in Meiosis. Science, 2003, 300, 1291-1295.	12.6	200
44	Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes and Development, 2003, 17, 603-614.	5.9	282
45	Meiotic arrest and aneuploidy in MLH3-deficient mice. Nature Genetics, 2002, 31, 385-390.	21.4	332
46	The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. Journal of Cell Science, 2002, 115, 1611-22.	2.0	282
47	Regulation of meiotic recombination and prophase I progression in mammals. BioEssays, 2001, 23, 996-1009.	2.5	105
48	Control of Spermatogenesis in Mice by the Cyclin D-Dependent Kinase Inhibitors p18 Ink4c and p19 Ink4d. Molecular and Cellular Biology, 2001, 21, 3244-3255.	2.3	103
49	Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nature Genetics, 1999, 21, 123-127.	21.4	367
50	Macrophages: important accessory cells for reproductive function. Journal of Leukocyte Biology, 1999, 66, 765-772.	3.3	128
51	Colony-Stimulating Factor-1 Plays a Major Role in the Development of Reproductive Function in Male Mice. Molecular Endocrinology, 1997, 11, 1636-1650.	3.7	81
52	Absence of Colony Stimulating Factor-1 in Osteopetrotic (csfmop/csfmop) Mice Disrupts Estrous Cycles and Ovulation1. Biology of Reproduction, 1997, 56, 110-118.	2.7	127
53	Effect of the Colony-Stimulating Factor-1 Null Mutation, Osteopetrotic (csfmoP), on the Distribution of Macrophages in the Male Mouse Reproductive Tract1. Biology of Reproduction, 1997, 56, 1290-1300.	2.7	55
54	Mutation in the Mismatch Repair Gene Msh6 Causes Cancer Susceptibility. Cell, 1997, 91, 467-477.	28.9	326

Paula E Cohen

#	Article	IF	CITATIONS
55	Meiotic Pachytene Arrest in MLH1-Deficient Mice. Cell, 1996, 85, 1125-1134.	28.9	528
56	Absence of Colony-Stimulating Factor-1 in Osteopetrotic (csfmoP/csfmOP) Mice Results in Male Fertility Defects1. Biology of Reproduction, 1996, 55, 310-317.	2.7	132
57	Gene networks in oocyte meiosis. , 0, , 24-37.		O