Jean-Cyrille Hierso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3376564/publications.pdf

Version: 2024-02-01

109321 85541 5,599 117 35 71 citations g-index h-index papers 147 147 147 5421 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Palladium-Based Catalytic Systems for the Synthesis of Conjugated Enynes by Sonogashira Reactions and Related Alkynylations. Angewandte Chemie - International Edition, 2007, 46, 834-871.	13.8	773
2	Recyclable Heterogeneous Palladium Catalysts in Pure Water: Sustainable Developments in Suzuki, Heck, Sonogashira and Tsuji–Trost Reactions. Advanced Synthesis and Catalysis, 2010, 352, 33-79.	4.3	618
3	Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones. Chemical Society Reviews, 2012, 41, 3929.	38.1	321
4	Performances of symmetrical achiral ferrocenylphosphine ligands in palladium-catalyzed cross-coupling reactions: A review of syntheses, catalytic applications and structural properties. Coordination Chemistry Reviews, 2007, 251, 2017-2055.	18.8	167
5	Diamondoids: functionalization and subsequent applications of perfectly defined molecular cage hydrocarbons. New Journal of Chemistry, 2014, 38, 28-41.	2.8	142
6	Indirect Nonbonded Nuclear Spin–Spin Coupling: A Guide for the Recognition and Understanding of "Through-Space―NMR <i>J</i> Constants in Small Organic, Organometallic, and Coordination Compounds. Chemical Reviews, 2014, 114, 4838-4867.	47.7	138
7	Highly Dispersed Palladium–Polypyrrole Nanocomposites: Inâ€Water Synthesis and Application for Catalytic Arylation of Heteroaromatics by Direct C–H Bond Activation. Advanced Functional Materials, 2011, 21, 1064-1075.	14.9	128
8	A General Palladium atalyzed Method for Alkylation of Heteroarenes Using Secondary and Tertiary Alkyl Halides. Angewandte Chemie - International Edition, 2014, 53, 13573-13577.	13.8	127
9	Structural diversity in coordination chemistry of tridentate and tetradentate polyphosphines of Group 6 to 10 transition metal complexes. Coordination Chemistry Reviews, 2003, 236, 143-206.	18.8	126
10	A Versatile Palladium/Triphosphane System for Direct Arylation of Heteroarenes with Chloroarenes at Low Catalyst Loading. Angewandte Chemie - International Edition, 2010, 49, 6650-6654.	13.8	124
11	Catalytic Efficiency of a New Tridentate Ferrocenyl Phosphine Auxiliary:  Sonogashira Cross-Coupling Reactions of Alkynes with Aryl Bromides and Chlorides at Low Catalyst Loadings of 10-1 to 10-4 Mol %. Organic Letters, 2004, 6, 3473-3476.	4.6	115
12	A Palladiumâ^Ferrocenyl Tetraphosphine System as Catalyst for Suzuki Cross-Coupling and Heck Vinylation of Aryl Halides:Â Dynamic Behavior of the Palladium/Phosphine Species. Organometallics, 2003, 22, 4490-4499.	2.3	95
13	"Through-Space―Nuclear Spinâ^'SpinJPPCoupling in Tetraphosphine Ferrocenyl Derivatives: A31P NMR and X-ray Structure Correlation Study for Coordination Complexes. Journal of the American Chemical Society, 2004, 126, 11077-11087.	13.7	82
14	Catalytic Efficiency of a New Tridentate Ferrocenyl Phosphine Auxiliary: Sonogashira Cross-Coupling Reactions of Alkynes with Aryl Bromides and Chlorides at Low Catalyst Loadings of 10-1 to 10-4 mol % ChemInform, 2005, 36, no.	0.0	80
15	Ultra‣ow Catalyst Loading as a Concept in Economical and Sustainable Modern Chemistry: The Contribution of Ferrocenylpolyphosphane Ligands. European Journal of Inorganic Chemistry, 2007, 2007, 3767-3780.	2.0	78
16	Palladium-Catalyzed Direct Arylation of Heteroaromatics with Activated Aryl Chlorides Using a Sterically Relieved Ferrocenyl-Diphosphane. ACS Catalysis, 2012, 2, 1033-1041.	11.2	73
17	New concepts in multidentate ligand chemistry: effects of multidentarity on catalytic and spectroscopic properties of ferrocenyl polyphosphines. Chemical Society Reviews, 2007, 36, 1754.	38.1	72
18	Use of a bulky phosphine of weak σ-donicity with palladium as a versatile and highly-active catalytic system: allylation and arylation coupling reactions at 10â^1â€"10â^4mol% catalyst loadings of ferrocenyl bis(difurylphosphine)/Pd. Tetrahedron, 2005, 61, 9759-9766.	1.9	66

#	Article	IF	CITATIONS
19	MOCVD of rhodium, palladium and platinum complexes on fluidized divided substrates: Novel process for one-step preparation of noble-metal catalysts. Applied Organometallic Chemistry, 1998, 12, 161-172.	3.5	65
20	<i>Ortho</i> â€Functionalized Aryltetrazines by Direct Palladium atalyzed Câ^H Halogenation: Application to Fast Electrophilic Fluorination Reactions. Angewandte Chemie - International Edition, 2016, 55, 5555-5559.	13.8	63
21	Organometallic Chemical Vapor Deposition of Palladium under Very Mild Conditions of Temperature in the Presence of a Low Reactive Gas Partial Pressure. Chemistry of Materials, 1996, 8, 2481-2485.	6.7	62
22	Platinum and Palladium Films Obtained by Low-Temperature MOCVD for the Formation of Small Particles on Divided Supports as Catalytic Materials. Chemistry of Materials, 2000, 12, 390-399.	6.7	60
23	The Hydrogenâ€Storage Challenge: Nanoparticles for Metalâ€Catalyzed Ammonia Borane Dehydrogenation. Small, 2021, 17, e2102759.	10.0	60
24	Conformational Control of Metallocene Backbone by Cyclopentadienyl Ring Substitution: A New Concept in Polyphosphane Ligands Evidenced by "Through-Space―Nuclear Spinâ^Spin Coupling. Application in Heteroaromatics Arylation by Direct Câ^'H Activation. Organometallics, 2009, 28, 3152-3160.	2.3	58
25	Direct Arylation of Heteroaromatic Compounds with Congested, Functionalised Aryl Bromides at Low Palladium/Triphosphane Catalyst Loading. Chemistry - A European Journal, 2011, 17, 6453-6461.	3.3	54
26	Platinum, palladium and rhodium complexes as volatile precursors for depositing materials. Coordination Chemistry Reviews, 1998, 178-180, 1811-1834.	18.8	51
27	Etherification of Functionalized Phenols with Chloroheteroarenes at Low Palladium Loading: Theoretical Assessment of the Role of Triphosphane Ligands in CO Reductive Elimination. Advanced Synthesis and Catalysis, 2011, 353, 3403-3414.	4.3	51
28	Porous Materials Based on 3-Dimensional Td-Directing Functionalized Adamantane Scaffolds and Applied as Recyclable Catalysts. Chemistry of Materials, 2019, 31, 619-642.	6.7	48
29	Copper(I) Iodide Polyphosphine Adducts at Low Loading for Sonogashira Alkynylation of Demanding Halide Substrates: Ligand Exchange Study between Copper and Palladium. Organometallics, 2010, 29, 2815-2822.	2.3	47
30	First Copper(I) Ferrocenyltetraphosphine Complexes: Possible Involvement in Sonogashira Cross-Coupling Reaction?. Organometallics, 2008, 27, 1506-1513.	2.3	44
31	The First Catalytic Method for Heck Alkynylation of Unactivated Aryl Bromides (Copper-Free) Tj ETQq1 1 0.784314 Simple, Inexpensive and Recyclable System. European Journal of Organic Chemistry, 2007, 2007, 583-587.	4 rgBT /O\ 2.4	verlock 10 T 40
32	Diphosphines of dppf-Type Incorporating Electron-Withdrawing Furyl Moieties Substantially Improve the Palladium-Catalysed Amination of Allyl Acetates. Advanced Synthesis and Catalysis, 2005, 347, 1198-1202.	4.3	39
33	Thioetherification of Chloroheteroarenes: A Binuclear Catalyst Promotes Wide Scope and High Functionalâ€Group Tolerance. Chemistry - A European Journal, 2014, 20, 12584-12594.	3.3	38
34	Building Diversity in <i>ortho</i> -Substituted <i>s</i> -Aryltetrazines By Tuning N-Directed Palladium C–H Halogenation: Unsymmetrical Polyhalogenated and Biphenyl <i>s</i> -Aryltetrazines. ACS Catalysis, 2017, 7, 8493-8501.	11.2	37
35	Donorâ€Stabilized Phosphenium Adducts as New Efficient and Immobilizing Ligands in Palladiumâ€Catalyzed Alkynylation and Platinumâ€Catalyzed Hydrogenation in Ionic Liquids. Advanced Synthesis and Catalysis, 2009, 351, 1621-1628.	4.3	35
36	Input of P, N-(phosphanyl, amino)-ferrocene hybrid derivatives in late transition metals catalysis. Coordination Chemistry Reviews, 2018, 355, 74-100.	18.8	35

#	Article	IF	CITATIONS
37	Metal-organic chemical vapor deposition in a fluidized bed as a versatile method to prepare layered bimetallic nanoparticles. Journal of Molecular Catalysis A, 1998, 135, 321-325.	4.8	34
38	Direct Arylation of Heterocycles: The Performances of Ferroceneâ€Based Polyphosphane Ligands in Palladiumâ€Catalyzed CH Bond Activation. ChemCatChem, 2010, 2, 296-305.	3.7	33
39	Congested Ferrocenyl Polyphosphanes Bearing Electron-Donating or Electron-Withdrawing Phosphanyl Groups: Assessment of Metallocene Conformation from NMR Spin Couplings and Use in Palladium-Catalyzed Chloroarenes Activation. Inorganic Chemistry, 2011, 50, 11592-11603.	4.0	32
40	Syntheses of polyfunctionalized resveratrol derivatives using Wittig and Heck protocols. Tetrahedron, 2012, 68, 3899-3907.	1.9	32
41	Synthesis and characterisation of a new class of phosphine-phosphonite ferrocenediyl dinuclear rhodium complexes. Journal of Organometallic Chemistry, 2004, 689, 766-769.	1.8	29
42	Palladiumâ€Catalysed CH Bond Electrophilic Fluorination of Highly Substituted Arylpyrazoles: Experimental and DFT Mechanistic Insights. Advanced Synthesis and Catalysis, 2015, 357, 2913-2923.	4.3	29
43	"Through-space―31P spin–spin couplings in ferrocenyl tetraphosphine coordination complexes: Improvement in the determination of the distance dependence of JPP constants. Journal of Organometallic Chemistry, 2008, 693, 574-578.	1.8	27
44	A straightforward copper-free palladium methodology for the selective alkynylation of a wide variety of S-, O-, and N-based mono- and diheterocyclic bromides and chlorides. Tetrahedron, 2009, 65, 7146-7150.	1.9	26
45	Modular functionalized polyphosphines for supported materials: previously unobserved ³¹ P-NMR «through-space» ABCD spin systems and heterogeneous palladium-catalysed C–C and C–H arylation. Chemical Communications, 2014, 50, 9505-9508.	4.1	26
46	Gold atalyzed Suzuki Coupling of <i>ortho</i> à€§ubstituted Hindered Aryl Substrates. Chemistry - an Asian Journal, 2017, 12, 459-464.	3.3	26
47	Synthesizing Multidentate Ferrocenylphosphines: A Powerful Route to Dissymmetrically Tri-Substituted Ferrocenes. X-ray Structure and13C NMR of a Diaryl–Alkyl-phosphino Ferrocene. Chemistry Letters, 2004, 33, 1296-1297.	1.3	25
48	Gold(I) Complexes of Ferrocenyl Polyphosphines: Aurophilic Gold Chloride Formation and Phosphine-Concerted Shuttling of a Dinuclear [ClAu···AuCl] Fragment. Inorganic Chemistry, 2016, 55, 10907-10921.	4.0	25
49	New insights on the anti-skinning effect of methyl ethyl ketoxime in alkyd paints. New Journal of Chemistry, 2003, 27, 854-859.	2.8	24
50	Palladiumâ€Catalyzed C2â^'H Arylation of Unprotected (Nâ^'H)â€Indoles "On Water―Using Primary Diamant Phosphine Oxides as a Class of Primary Phosphine Oxide Ligands. ChemCatChem, 2018, 10, 2915-2922.	у _{з.7}	22
51	Nanodiamondâ€Palladium Core–Shell Organohybrid Synthesis: A Mild Vaporâ€Phase Procedure Enabling Nanolayering Metal onto Functionalized sp ³ â€Carbon. Advanced Functional Materials, 2018, 28, 1705786.	14.9	22
52	Alkyne[hydrotris(pyrazolyl)borato]tantalum Complexes – An Ethyl Group is a Better α-Agostic Donor Than a Methyl Group. European Journal of Inorganic Chemistry, 2000, 2000, 839-842.	2.0	21
53	"Through-space―nuclear spin–spin couplings in ferrocenyl polyphosphanes and diphosphino cavitands: A new way of gathering structural information in constrained P(III) ligands by NMR. Comptes Rendus Chimie, 2009, 12, 1002-1013.	0.5	20
54	Diamondoid Nanostructures as sp ³ â€Carbonâ€Based Gas Sensors. Angewandte Chemie - International Edition, 2019, 58, 9933-9938.	13.8	20

#	Article	IF	Citations
55	Palladium-Catalysed Heck Alkynylation of Aryl Bromides in an Imidazolium Ionic Liquid: An Unexpected Subsequent Alkyne Hydrogenation Reaction. Synlett, 2006, 2006, 3005-3008.	1.8	19
56	The functionalization of nanodiamonds ($<$ i>diamondoids $<$ /i>) as a key parameter of their easily controlled self-assembly in micro- and nanocrystals from the vapor phase. Nanoscale, 2015, 7, 1956-1962.	5.6	19
57	Palladium–Polypyrrole Nanocomposites Pd@PPy for Direct C–H Functionalization of Pyrroles and Imidazoles with Bromoarenes. Synlett, 2016, 27, 1227-1231.	1.8	19
58	First Annelated Azaphosphole-Ferrocenes: Synthetic Pathways and Structures. Organometallics, 2012, 31, 5986-5989.	2.3	18
59	Defying Stereotypes with Nanodiamonds: Stable Primary Diamondoid Phosphines. Journal of Organic Chemistry, 2016, 81, 8759-8769.	3.2	18
60	Diastereoselective Synthesis of Dialkylated Bis(phosphino)ferrocenes: Their Use in Promoting Silverâ€Mediated Nucleophilic Fluorination of Chloroquinolines. European Journal of Inorganic Chemistry, 2017, 2017, 330-339.	2.0	18
61	Efficient palladium–ferrocenylphosphine catalytic systems for allylic amination of monoterpene derivatives. Applied Organometallic Chemistry, 2006, 20, 845-850.	3.5	17
62	A Simple Phosphine–Diolefinâ€Promoted Copperâ€Catalysed Nâ€Arylation of Pyrazoles with (Hetero)aromatic Bromides: The Case of Chloroarenes Revisited. ChemCatChem, 2012, 4, 1828-1835.	3.7	17
63	Ferrocenyl (P,N)-diphosphines incorporating pyrrolyl, imidazolyl orâbenzazaphospholyl moieties: Synthesis, coordination to group 10 metalsâandâperformances in palladium-catalyzed arylation reactions. Journal of Organometallic Chemistry, 2013, 735, 38-46.	1.8	17
64	Aminomethyl-Substituted Ferrocenes and Derivatives: Straightforward Synthetic Routes, Structural Characterization, and Electrochemical Analysis. Organometallics, 2013, 32, 5784-5797.	2.3	17
65	Palladium-catalyzed heteroaryl thioethers synthesis overcoming palladium dithiolate resting states inertness: Practical road to sulfones and NH-sulfoximines. Catalysis Communications, 2018, 111, 52-58.	3.3	17
66	Palladiumâ€Catalyzed Electrophilic C–Hâ€Bond Fluorination: Mechanistic Overview and Supporting Evidence. European Journal of Organic Chemistry, 2019, 2019, 233-253.	2.4	17
67	Bridgeâ€Clamp Bis(tetrazine)s with [N] 8 Ï€â€Stacking Interactions and Azido―s â€Aryl Tetrazines: Two Classes of Doubly Clickable Tetrazines. Angewandte Chemie - International Edition, 2020, 59, 1149-1154.	13.8	17
68	Different coordination modes of a $1,1\hat{a}\in^2$, $2,2\hat{a}\in^2$ -ferrocenyltetraphosphine: bi- and tri-dentate behaviour with group 6 and 7 transition metals. Dalton Transactions RSC, 2002, , 2322-2327.	2.3	16
69	Kinetic and Electrochemical Studies of the Oxidative Addition of Demanding Organic Halides to Pd(0): the Efficiency of Polyphosphane Ligands in Low Palladium Loading Cross-Couplings Decrypted. Inorganic Chemistry, 2013, 52, 11923-11933.	4.0	16
70	Uncommon perspectives in palladium- and copper-catalysed arylation and heteroarylation of terminal alkynes following Heck or Sonogashira protocols: Interactions copper/ligand, formation of diynes, reaction and processes in ionic liquids. Comptes Rendus Chimie, 2013, 16, 580-596.	0.5	14
71	Converging and Diverging Synthetic Strategies to Tetradentate (⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩′)-Diaminomethyl,(⟨i⟩P⟨ i⟩,⟨i⟩P⟨ i⟩′)-Ferrocenyl Ligands: Influence of ⟨i>tert⟨ i>-Butyl Groups on Ferrocene Backbone Conformation. Organometallics, 2015, 34, 5015-5028.	2.3	14
72	(2â€Pyridyl)sulfonyl Groups for <i>ortho</i> â€Directing Palladium―Catalyzed Carbon–Halogen Bond Formation at Functionalized Arenes. Advanced Synthesis and Catalysis, 2017, 359, 3792-3804.	4.3	14

#	Article	IF	CITATIONS
73	Palladium C–N bond formation catalysed by air-stable robust polydentate ferrocenylphosphines: a comparative study for the efficient and selective coupling of aniline derivatives to dichloroarene. Catalysis Science and Technology, 2014, 4, 2072.	4.1	13
74	Phenol Derivatives in Rutheniumâ€Catalyzed Câ€"H Arylation: A General Synthetic Access to Azoleâ€Based Congested Polyaromatics. European Journal of Organic Chemistry, 2018, 2018, 4953-4958.	2.4	13
75	Mono and dinuclear hydrotris(3,5-dimethylpyrazolyl)borato tantalum complexes. Polyhedron, 2004, 23, 379-383.	2.2	12
76	Palladium Complexes of Constrained Polyphosphines - Discovery and Investigation of & Discovery amount	1.6	12
77	Planar-Chiral 1,1′-Diboryl Metallocenes: Diastereoselective Synthesis from Boryl Cyclopentadienides and Spin Density Analysis of a Diborylcobaltocene. Inorganic Chemistry, 2017, 56, 1966-1973.	4.0	12
78	A general diastereoselective synthesis of highly functionalized ferrocenyl ambiphiles enabled on a large scale by electrochemical purification. Chemical Communications, 2017, 53, 6017-6020.	4.1	12
79	Highly Functionalized Ferrocenes. European Journal of Inorganic Chemistry, 2020, 2020, 419-445.	2.0	12
80	Nanocatalysts for High Selectivity Enyne Cyclization: Oxidative Surface Reorganization of Gold Sub-2-nm Nanoparticle Networks. Jacs Au, 2021, 1, 187-200.	7.9	12
81	Unique chains of alternating octahedral and tetrahedral cobalt(ii) sites: crystal structures of the novel chloro-bridged complexes [Co4(ν-Cl)6Cl2(thf)4(MeOH)2]n and [{Co4(ν-Cl)6Cl2(thf)4(H2O)2}Â-2THF]n. Chemical Communications, 2000, , 1359-1360.	4.1	11
82	Cobalt(II) aldoxime complexes stabilised by halide hydrogen bonding: crystal structures of [Co{HONC(H)(Me)}4X2] (Xâ€=â€Cl or Br) and [Co{HONC(H)(Pr)}4Cl2]. Dalton Transactions RSC, 2001 197-201.	1,2,3	11
83	Selective Preparation of Diamondoid Phosphonates. Journal of Organic Chemistry, 2014, 79, 5369-5373.	3.2	11
84	Gold(I) Complexes Nuclearity in Constrained Ferrocenyl Diphosphines: Dramatic Effect in Goldâ€Catalyzed Enyne Cycloisomerization. Chemistry - an Asian Journal, 2020, 15, 2879-2885.	3.3	11
85	Influence of solvent mixture on nucleophilicity parameters: the case of pyrrolidine in methanol–acetonitrile. RSC Advances, 2020, 10, 28635-28643.	3.6	11
86	3D Ruthenium Nanoparticle Covalent Assemblies from Polymantane Ligands for Confined Catalysis. Chemistry of Materials, 2020, 32, 2365-2378.	6.7	11
87	Phosphorusâ€Directed Rhodiumâ€Catalyzed Câ^'H Arylation of 1â€Pyrenylphosphines Selective at the <i>K</i> å€Region. Advanced Synthesis and Catalysis, 2022, 364, 440-452.	4.3	11
88	(Cycloheptadienyl)diphenylphosphine: A Versatile Hybrid Ligand. Organometallics, 2012, 31, 947-958.	2.3	9
89	Hexaphosphine: A Multifaceted Ligand for Transition Metal Coordination. European Journal of Inorganic Chemistry, 2012, 2012, 1347-1352.	2.0	9
90	Palladium-catalyzed formation of secondary and tertiary amines from aryl dihalides with air-stable ferrocenyl tri- and diphosphines: Synthesis and X-ray structure of efficient catalysts beyond [PdCl2(DPPF)]. Catalysis Communications, 2014, 51, 10-14.	3.3	9

#	Article	IF	CITATIONS
91	Electrosynthesis as a Powerful Method for the Generation of Catalytic Intermediates: Efficient Isolation of a Palladium Aryl Halide Oxidative Addition Product. Chemistry - A European Journal, 2011, 17, 9901-9906.	3.3	8
92	Functionalized Tri- and Tetraphosphine Ligands as a General Approach for Controlled Implantation of Phosphorus Donors with a High Local Density in Immobilized Molecular Catalysts. ChemPlusChem, 2015, 80, 119-129.	2.8	8
93	Highly Functionalized BrÃ, nsted Acidic/Lewis Basic Hybrid Ferrocene Ligands: Synthesis and Coordination Chemistry. European Journal of Inorganic Chemistry, 2019, 2019, 865-874.	2.0	8
94	Surface Reactivity of Transition Metal CVD Precursors: Towards the Control of the Nucleation Step. , $0, 147-171.$		7
95	1,1′â€Binaphthylâ€2â€methylpyridiniumâ€Based Peroxophosphotungstate Salts: Synthesis, Characterization, Their Use as Oxidation Catalysts. European Journal of Inorganic Chemistry, 2009, 2009, 5148-5155.	and 2.0	7
96	Selective formation of a unique diphosphonium-diphosphine from a tetraphosphine double protonation induced by zirconium salts. Dalton Transactions, 2008, , 4206.	3.3	6
97	Câ^'H Bond Arylation of Pyrazoles at the βâ€Position: General Conditions and Computational Elucidation for a High Regioselectivity. Chemistry - A European Journal, 2021, 27, 5546-5554.	3.3	6
98	Synthesis and Catalytic Use of Polar Phosphinoferrocene Amidosulfonates Bearing Bulky Substituents at the Ferrocene Backbone. Organometallics, 2021, 40, 1934-1944.	2.3	6
99	Unsymmetrically Substituted Bis(phosphino)Ferrocenes Triggering Through-Space ³¹ (P,) Tj ETQq1 1 3571-3584.	0.784314 2.3	rgBT /Over 6
100	Distinguishing "Through-Space―from "Through-Bonds―Contribution in Indirect Nuclear Spin–Spin Coupling: General Approaches Applied to Complex <i>J</i> _{PP} and <i>J</i> _{PSe} Scalar Couplings. Journal of the American Chemical Society, 2022, 144, 10768-10784.	13.7	6
101	Cobalt-Assisted Condensation of 2-Butanone Oxime and Acetone: Synthesis and X-ray Structure of the Novel Acetaldiimine Complex [Col2{((CH3CH2)(CH3)C=NO)2C(CH3)2}]. European Journal of Inorganic Chemistry, 2000, 2000, 2459-2462.	2.0	5
102	{1,1′-Bis[bis(5-methyl-2-furyl)phosphino]ferrocene-l̂°2P,P′}dichloroplatinum(II) dichloromethane hemisolvate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m2267-m2269.	0.2	5
103	A sterically congested 1,2-diphosphino-1′-boryl-ferrocene: synthesis, characterization and coordination to platinum. Dalton Transactions, 2019, 48, 11191-11195.	3.3	5
104	Solvent-free ruthenium-catalysed triflate coupling as a convenient method for selective azole- <i>o</i> -C–H monoarylation. Organic and Biomolecular Chemistry, 2019, 17, 5916-5919.	2.8	5
105	C–H Halogenation of Pyridyl Sulfides Avoiding the Sulfur Oxidation: A Direct Catalytic Access to Sulfanyl Polyhalides and Polyaromatics. ACS Omega, 2019, 4, 20459-20469.	3.5	5
106	Synthesis and structural characterisation of bulky heptaaromatic (hetero)aryl <i>o</i> -substituted <i>s</i> -aryltetrazines. New Journal of Chemistry, 2020, 44, 15235-15243.	2.8	5
107	Pd–PPy nanocomposite on the surface of carbon nanotubes: synthesis and catalytic activity. Surface Innovations, 2017, 5, 121-129.	2.3	5
108	Tetranuclear Dicationic Aurophilic Gold(I) Catalysts in Enyne Cycloisomerization: Cooperativity for a Dramatic Shift in Selectivity. Chemistry - A European Journal, 2022, 28, .	3.3	5

#	Article	IF	CITATIONS
109	Enlarging the family of ferrocenylphosphine dinuclear rhodium complexes: synthesis and X-ray structure of a novel "A-frame―type trimetallic Rh/Fe/Rh complex. Inorganica Chimica Acta, 2004, 357, 3089-3093.	2.4	4
110	Bridgeâ€Clamp Bis(tetrazine)s with [N] 8 Ï€â€Stacking Interactions and Azido―s â€Aryl Tetrazines: Two Classes of Doubly Clickable Tetrazines. Angewandte Chemie, 2020, 132, 1165-1170.	2.0	4
111	High Recyclability Magnetic Iron Oxideâ€Supported Ruthenium Nanocatalyst for H ₂ Release from Ammoniaâ€Borane Solvolysis. ChemNanoMat, 2022, 8, .	2.8	3
112	Double Arylation of Diynes and Alkynylation of Functionalized Heteroaryl Halides by a Practical Heck Reaction in an Ionic Liquid. Synlett, 2011, 2011, 2844-2848.	1.8	2
113	Nonbonded Indirect Nuclear Spin–Spin Couplings (J Couplings "Through-Spaceâ€) for Structural Determination in Small Organic and Organometallic Species. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 2013, 3, 285-314.	0.6	2
114	Diamondoid Nanostructures as sp 3 arbonâ€Based Gas Sensors. Angewandte Chemie, 2019, 131, 10038-10043.	2.0	1
115	Apology: Functionalized Tri- and Tetraphosphine Ligands as a General Approach for Controlled Implantation of Phosphorus Donors with a High Local Density in Immobilized Molecular Catalysts. ChemPlusChem, 2015, 80, 1495-1495.	2.8	O
116	Cluster Preface: Heterogeneous Catalysis. Synlett, 2016, 27, 1177-1178.	1.8	0
117	Coordination Chemistry of a Bis(Tetrazine) Tweezer: A Case of Host-Guest Behavior with Silver Salts. Molecules, 2021, 26, 2705.	3.8	O