Jinhyuk Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337656/publications.pdf Version: 2024-02-01

INHVIR LEE

#	Article	IF	CITATIONS
1	The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nature Chemistry, 2016, 8, 692-697.	6.6	1,022
2	Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries. Science, 2014, 343, 519-522.	6.0	943
3	Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature, 2018, 556, 185-190.	13.7	525
4	The Configurational Space of Rocksaltâ€Type Oxides for Highâ€Capacity Lithium Battery Electrodes. Advanced Energy Materials, 2014, 4, 1400478.	10.2	256
5	Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nature Energy, 2019, 4, 1049-1058.	19.8	248
6	A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. Energy and Environmental Science, 2015, 8, 3255-3265.	15.6	224
7	Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Nature Communications, 2017, 8, 981.	5.8	197
8	Lithium Manganese Spinel Cathodes for Lithiumâ€kon Batteries. Advanced Energy Materials, 2021, 11, 2000997.	10.2	177
9	Design principles for high transition metal capacity in disordered rocksalt Li-ion cathodes. Energy and Environmental Science, 2018, 11, 2159-2171.	15.6	123
10	Stoichiometric Layered Potassium Transition Metal Oxide for Rechargeable Potassium Batteries. Chemistry of Materials, 2018, 30, 6532-6539.	3.2	108
11	Stabilized Coâ€Free Liâ€Rich Oxide Cathode Particles with An Artificial Surface Prereconstruction. Advanced Energy Materials, 2020, 10, 2001120.	10.2	74
12	Short-Range Order and Unusual Modes of Nickel Redox in a Fluorine-Substituted Disordered Rocksalt Oxide Lithium-Ion Cathode. Chemistry of Materials, 2018, 30, 6945-6956.	3.2	72
13	Uranium In Situ Electrolytic Deposition with a Reusable Functional Grapheneâ€Foam Electrode. Advanced Materials, 2021, 33, e2102633.	11.1	52
14	Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries. Journal of Energy Chemistry, 2021, 61, 253-268.	7.1	52
15	Determining the Criticality of Liâ€Excess for Disorderedâ€Rocksalt Liâ€Ion Battery Cathodes. Advanced Energy Materials, 2021, 11, 2100204.	10.2	31
16	Kinetic Rejuvenation of Li-Rich Li-Ion Battery Cathodes upon Oxygen Redox. ACS Applied Energy Materials, 2020, 3, 7931-7943.	2.5	12
17	Electrodes: The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes (Adv. Energy Mater. 13/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	10.2	3