
Svetlana Alexandrovna Semenova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3376464/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of ozone treatment on change of structural–chemical parameters of coal vitrinites and their reactivity during the thermal liquefaction process. Fuel, 2006, 85, 1264-1272.	6.4	14
2	Dependence of the water wettability of the surfaces of fossil coals on their structure and properties. Solid Fuel Chemistry, 2017, 51, 135-140.	0.7	13
3	Coal flotation by ozonized spent motor oil. Coke and Chemistry, 2017, 60, 154-157.	0.4	10
4	Processing low-grade oxidized coal to produce effective carbon sorbents. Coke and Chemistry, 2012, 55, 115-118.	0.4	9
5	Preparation of oxygen-containing organic products from bed-oxidized brown coal by ozonation. Russian Journal of Applied Chemistry, 2009, 82, 80-85.	0.5	7
6	Effect of modification of granulated activated carbons with ozone on their properties. Russian Journal of Applied Chemistry, 2011, 84, 597-601.	0.5	7
7	Porous structure of adsorbents based on naturally oxidized Kuznets Basin coal. Coke and Chemistry, 2012, 55, 429-431.	0.4	7
8	Ozonation of coal vitrinites of different metamorphism degrees in gas and liquid phases. Solid Fuel Chemistry, 2007, 41, 15-18.	0.7	6
9	Degradation of combustible shale kerogen from the Dmitrievskoe deposit by ozonolysis. Solid Fuel Chemistry, 2009, 43, 267-272.	0.7	5
10	Oxidative modification of coal tar with ozone in various media. Solid Fuel Chemistry, 2012, 46, 352-356.	0.7	5
11	Influence of weathering on the composition and properties of coal. Coke and Chemistry, 2017, 60, 96-101.	0.4	5
12	Production of Flotation Agents for Coal Cleaning by the Oxidative Modification of Waste Motor Oils. Solid Fuel Chemistry, 2018, 52, 247-251.	0.7	5
13	Interaction of O2, O3, and H2O2 with an activated carbon. Solid Fuel Chemistry, 2011, 45, 418-421.	0.7	4
14	Material composition of fractions with different densities separated from slurry coal. Solid Fuel Chemistry, 2013, 47, 243-248.	0.7	4
15	Determining the Wettability of Coal Surfaces. Coke and Chemistry, 2019, 62, 545-551.	0.4	4
16	Microbubble Modification of Coal Surfaces before Flotation. Coke and Chemistry, 2020, 63, 1-4.	0.4	4
17	Liquid-phase ozonation of vitrinites of coals of various metamorphic stages: Product composition. Solid Fuel Chemistry, 2007, 41, 85-89.	0.7	3
18	Modification of Mongolian coals using a low-temperature oxygen plasma. Solid Fuel Chemistry, 2013, 47, 83-87.	0.7	3

#	Article	IF	CITATIONS
19	Influence of alkali treatment on the properties of adsorbents based on naturally oxidized Kuznets Basin coal. Coke and Chemistry, 2013, 56, 178-181.	0.4	3
20	Flotational Enrichment of the Semidull Lithotype of Coking Coal. Coke and Chemistry, 2017, 60, 380-383.	0.4	3
21	Flotational Enrichment of Coking Coal by Means of Spent Motor Oil. Coke and Chemistry, 2017, 60, 485-488.	0.4	3
22	Effect of a cavitation treatment of coals on their physicochemical properties and ability for thermal dissolution. Solid Fuel Chemistry, 2007, 41, 195-199.	0.7	2
23	Effect of ozonation on the composition of crude coal-tar benzene. Russian Journal of Applied Chemistry, 2007, 80, 846-850.	0.5	2
24	Ozonization of humic acids in brown coal oxidized in situ. Solid Fuel Chemistry, 2008, 42, 268-273.	0.7	2
25	Modification of the organic matter of boghead with nitrous oxide. Solid Fuel Chemistry, 2010, 44, 414-418.	0.7	2
26	Modification of coal tar in low-temperature oxygen plasma. Coke and Chemistry, 2012, 55, 277-281.	0.4	2
27	Modification of coal tar by nitrous oxide. Coke and Chemistry, 2012, 55, 319-323.	0.4	2
28	Chemical composition of various petrographic constituents of brown coal from the Balakhtinskoe deposit. Solid Fuel Chemistry, 2012, 46, 1-6.	0.7	2
29	Modification of the organic matter of brown coals with nitrous oxide. Solid Fuel Chemistry, 2012, 46, 159-163.	0.7	2
30	Physicochemical characteristics of adsorbents based on coals from the Khar Tarvagatai deposit in Mongolia. Solid Fuel Chemistry, 2013, 47, 342-348.	0.7	2
31	Influence of ozonization on the hydrocarbon composition of raw benzene at coke plants. Coke and Chemistry, 2013, 56, 215-219.	0.4	2
32	Flotational Enrichment of Low-Quality and Oxidized Coal Using Spent Motor Oil. Coke and Chemistry, 2018, 61, 319-323.	0.4	2
33	Composition of the Clarodurain Lithotypes of Kuzbass Coal and Its Flotation Concentration. Solid Fuel Chemistry, 2018, 52, 289-295.	0.7	2
34	Disperse Composition of a Coal Flotation Reagent (Spent-Oil Emulsion). Coke and Chemistry, 2020, 63, 495-499.	0.4	2
35	Composition of the ozonolytic degradation products of the organic matter of Barzasskii sapromyxite coal. Solid Fuel Chemistry, 2009, 43, 80-85.	0.7	1
36	Modification of vitrinite coals in a low-temperature oxygen plasma. Solid Fuel Chemistry, 2010, 44, 402-406.	0.7	1

#	Article	IF	CITATIONS
37	Sorbents based on Mongolian coal. Coke and Chemistry, 2012, 55, 146-149.	0.4	1
38	Qualitative characteristics of power-generating coals from some deposits in Mongolia. Solid Fuel Chemistry, 2012, 46, 143-148.	0.7	1
39	Utilization of naturally oxidized Kuznetsk Basin coal. Coke and Chemistry, 2012, 55, 33-35.	0.4	1
40	Pore structures of carbon materials based on naturally oxidized Kuzbass coals. Solid Fuel Chemistry, 2013, 47, 292-297.	0.7	1
41	Assessment of the Likelihood of Underground Coal Oxidation and Self-Ignition: A Review. Coke and Chemistry, 2020, 63, 223-231.	0.4	1
42	Dependence of Coal Surface Wettability on the Petrographic Composition. Solid Fuel Chemistry, 2020, 54, 69-78.	0.7	1
43	Intensification of Coal Flotation by Means of Air Microbubbles. Coke and Chemistry, 2021, 64, 64-68.	0.4	1
44	Influence of Gas Microbubbles on the Wettability of Coal Surfaces. Coke and Chemistry, 2020, 63, 63-67.	0.4	1
45	INFLUENCE OF DISPERSIVENESS OF EMULSION COMPOSED OF OILY REAGENTS ON COAL FLOTATION RESULTS. Journal of Mining Science, 2020, 56, 838-847.	0.6	1
46	Liquid-phase ozonation of fusainized components of SS coal. Russian Journal of Applied Chemistry, 2007, 80, 1816-1821.	0.5	0
47	Ozonolysis of Yakut boghead coal in chloroform. Solid Fuel Chemistry, 2009, 43, 5-8.	0.7	0
48	Ozonization products of sapropelic caustobioliths. Coke and Chemistry, 2010, 53, 233-235.	0.4	0
49	Processing low-grade solid fuel by ozonization in oxygen-bearing products. Coke and Chemistry, 2010, 53, 353-355.	0.4	0
50	Activity of coals from mongolian deposits in the process of thermochemical degradation. Solid Fuel Chemistry, 2012, 46, 305-309.	0.7	0
51	Characteristic properties of brown coal lithotypes from the Tevshiin Govi deposit in Mongolia. Solid Fuel Chemistry, 2012, 46, 73-78.	0.7	0
52	Composition of resinous ozonization products of raw benzene. Coke and Chemistry, 2013, 56, 36-40.	0.4	0
53	Influence of modified spent motor oil on the wettability of coal. Coke and Chemistry, 2017, 60, 322-325.	0.4	0
54	Benefits of Ozonized Petroleum Products in Coal Flotation. Coke and Chemistry, 2018, 61, 301-304.	0.4	0

#	Article	IF	CITATIONS
55	Improving the quality of coal is one of the factors in intensification of combustion processes in coal-based energy. MATEC Web of Conferences, 2018, 194, 01043.	0.2	О
56	Effect of Reaction Medium on the Yield and Composition of the Products of the Liquid-Phase Ozonization of Brown Coal. Solid Fuel Chemistry, 2018, 52, 11-14.	0.7	0
57	Ozonized petrochemical products used to intensify coal flotation. IOP Conference Series: Earth and Environmental Science, 2019, 262, 012053.	0.3	0
58	Influence of Reagent Emulsification on Coal Flotation in the Presence of Gas Microbubbles. Coke and Chemistry, 2021, 64, 27-30.	0.4	0