Christina Janko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337646/publications.pdf

Version: 2024-02-01

102 4,682 papers citations

34 h-index 66 g-index

102 all docs 102 docs citations 102 times ranked 7548 citing authors

#	Article	IF	CITATIONS
1	Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nature Medicine, 2014, 20, 511-517.	15.2	734
2	Magnetic nanoparticle-based drug delivery for cancer therapy. Biochemical and Biophysical Research Communications, 2015, 468, 463-470.	1.0	350
3	Sodium Overload and Water Influx Activate the NALP3 Inflammasome. Journal of Biological Chemistry, 2011, 286, 35-41.	1.6	162
4	Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Frontiers in Immunology, 2012, 3, 277.	2.2	161
5	Autoimmunity and chronic inflammation â€" Two clearance-related steps in the etiopathogenesis of SLE. Autoimmunity Reviews, 2010, 10, 38-42.	2.5	147
6	Redox Modulation of HMGB1-Related Signaling. Antioxidants and Redox Signaling, 2014, 20, 1075-1085.	2.5	143
7	Lysosomeâ€Targeting Amplifiers of Reactive Oxygen Species as Anticancer Prodrugs. Angewandte Chemie - International Edition, 2017, 56, 15545-15549.	7.2	132
8	Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5856-E5865.	3.3	128
9	Phospholipids: Key Players in Apoptosis and Immune Regulation. Molecules, 2009, 14, 4892-4914.	1.7	126
10	Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthritis and Rheumatism, 2009, 60, 1733-1742.	6.7	107
11	Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility. International Journal of Nanomedicine, 2014, 9, 4847.	3.3	105
12	Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. International Journal of Nanomedicine, 2018, Volume 13, 1899-1915.	3.3	105
13	Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery. International Journal of Nanomedicine, 2014, 9, 3659.	3.3	90
14	Bonding the foe – NETting neutrophils immobilize the pro-inflammatory monosodium urate crystals. Frontiers in Immunology, 2012, 3, 376.	2.2	87
15	Macrophages Discriminate Glycosylation Patterns of Apoptotic Cell-derived Microparticles. Journal of Biological Chemistry, 2012, 287, 496-503.	1.6	85
16	Inefficient clearance of dying cells in patients with SLE: anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1098-1113.	2.2	82
17	Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. International Journal of Nanomedicine, 2017, Volume 12, 5223-5238.	3.3	82
18	Magnetic nanoparticles for cancer therapy. Nanotechnology Reviews, 2013, 2, 395-409.	2.6	77

#	Article	IF	Citations
19	ROSâ€Responsive Nâ€Alkylaminoferrocenes for Cancerâ€Cellâ€5pecific Targeting of Mitochondria. Angewandte Chemie - International Edition, 2018, 57, 11943-11946.	7.2	74
20	Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy. Frontiers in Oncology, 2019, 9, 59.	1.3	69
21	Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods. International Journal of Nanomedicine, 2015, 10, 4185.	3.3	65
22	Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. International Journal of Nanomedicine, 2017, Volume 12, 3207-3220.	3.3	60
23	Cells Under Pressure – Treatment of Eukaryotic Cells with High Hydrostatic Pressure, from Physiologic Aspects to Pressure Induced Cell Death. Current Medicinal Chemistry, 2008, 15, 2329-2336.	1.2	58
24	Magnetic Drug Targeting Reduces the Chemotherapeutic Burden on Circulating Leukocytes. International Journal of Molecular Sciences, 2013, 14, 7341-7355.	1.8	57
25	Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells. Biochemical and Biophysical Research Communications, 2010, 391, 1014-1020.	1.0	53
26	Colourful death: Six-parameter classification of cell death by flow cytometryâ€"Dead cells tell tales. Autoimmunity, 2013, 46, 336-341.	1.2	53
27	Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy. International Journal of Nanomedicine, 2015, 10, 6985.	3.3	46
28	<p>Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 8421-8432.	3.3	46
29	Different Storage Conditions Influence Biocompatibility and Physicochemical Properties of Iron Oxide Nanoparticles. International Journal of Molecular Sciences, 2015, 16, 9368-9384.	1.8	43
30	Strategies to optimize the biocompatibility of iron oxide nanoparticles – "SPIONs safe by design― Journal of Magnetism and Magnetic Materials, 2017, 431, 281-284.	1.0	43
31	Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications. Scientific Reports, 2016, 6, 23140.	1.6	42
32	Autoantibodies against galectins are associated with antiphospholipid syndrome in patients with systemic lupus erythematosus. Glycobiology, 2013, 23, 12-22.	1.3	39
33	CRP/anti-CRP Antibodies Assembly on the Surfaces of Cell Remnants Switches Their Phagocytic Clearance Toward Inflammation. Frontiers in Immunology, 2011, 2, 70.	2.2	38
34	Surface code—biophysical signals for apoptotic cell clearance. Physical Biology, 2013, 10, 065007.	0.8	38
35	Cellular effects of paclitaxel-loaded iron oxide nanoparticles on breast cancer using different 2D and 3D cell culture models. International Journal of Nanomedicine, 2019, Volume 14, 161-180.	3.3	35
36	An Endoplasmic Reticulum Specific Proâ€amplifier of Reactive Oxygen Species in Cancer Cells. Angewandte Chemie - International Edition, 2021, 60, 11158-11162.	7.2	34

#	Article	IF	CITATIONS
37	The Pathogenicity of Anti- \hat{I}^2 2GP1-IgG Autoantibodies Depends on Fc Glycosylation. Journal of Immunology Research, 2015, 2015, 1-12.	0.9	33
38	lgG opsonized nuclear remnants from dead cells cause systemic inflammation in SLE. Autoimmunity, 2010, 43, 232-235.	1.2	32
39	Navigation to the Graveyard-Induction of Various Pathways of Necrosis and Their Classification by Flow Cytometry. Methods in Molecular Biology, 2013, 1004, 3-15.	0.4	31
40	The involvement of E6, p53, p16, MDM2 and Gal-3 in the clinical outcome of patients with cervical cancer. Oncology Letters, 2017, 14, 4467-4476.	0.8	31
41	Tuning the structure of aminoferrocene-based anticancer prodrugs to prevent their aggregation in aqueous solution. Journal of Inorganic Biochemistry, 2018, 178, 9-17.	1.5	30
42	Inert Coats of Magnetic Nanoparticles Prevent Formation of Occlusive Intravascular Co-aggregates With Neutrophil Extracellular Traps. Frontiers in Immunology, 2018, 9, 2266.	2.2	29
43	Specific Removal of C-Reactive Protein by Apheresis in a Porcine Cardiac Infarction Model. Blood Purification, 2011, 31, 9-17.	0.9	28
44	Treatment Efficiency of Free and Nanoparticle-Loaded Mitoxantrone for Magnetic Drug Targeting in Multicellular Tumor Spheroids. Molecules, 2015, 20, 18016-18030.	1.7	28
45	Functionalization of T lymphocytes for magnetically controlled immune therapy: Selection of suitable superparamagnetic iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 473, 61-67.	1.0	28
46	UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice. Autoimmunity, 2013, 46, 317-322.	1.2	26
47	Nanomedical innovation: the SEON-concept for an improved cancer therapy with magnetic nanoparticles. Nanomedicine, 2015, 10, 3287-3304.	1.7	25
48	Magnetic microgels for drug targeting applications: Physical–chemical properties and cytotoxicity evaluation. Journal of Magnetism and Magnetic Materials, 2015, 380, 307-314.	1.0	25
49	Lysosomeâ€Targeting Amplifiers of Reactive Oxygen Species as Anticancer Prodrugs. Angewandte Chemie, 2017, 129, 15751-15755.	1.6	25
50	Cooperative binding of Annexin A5 to phosphatidylserine on apoptotic cell membranes. Physical Biology, 2013, 10, 065006.	0.8	24
51	Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells. International Journal of Molecular Sciences, 2015, 16, 26280-26290.	1.8	24
52	The uptake by blood-borne phagocytes of monosodium urate is dependent on heat-labile serum factor(s) and divalent cations. Autoimmunity, 2010, 43, 236-238.	1.2	23
53	Hyperthermia in combination with X-irradiation induces inflammatory forms of cell death. Autoimmunity, 2009, 42, 311-313.	1.2	22
54	Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy. International Journal of Molecular Sciences, 2017, 18, 1388.	1.8	22

#	Article	IF	CITATIONS
55	Adhesion/growth-regulatory galectins in the human eye: localization profiles and tissue reactivities as a standard to detect disease-associated alterations. Graefe's Archive for Clinical and Experimental Ophthalmology, 2012, 250, 1169-1180.	1.0	21
56	ROSâ€Responsive Nâ€Alkylaminoferrocenes for Cancerâ€Cellâ€Specific Targeting of Mitochondria. Angewandte Chemie, 2018, 130, 12119-12122.	1.6	21
57	The Progression of Cell Death Affects the Rejection of Allogeneic Tumors in Immune-Competent Mice ââ,¬â€œ Implications for Cancer Therapy. Frontiers in Immunology, 2014, 5, 560.	2.2	20
58	Magnetic Tissue Engineering of the Vocal Fold Using Superparamagnetic Iron Oxide Nanoparticles. Tissue Engineering - Part A, 2019, 25, 1470-1477.	1.6	20
59	Targeting of drug-loaded nanoparticles to tumor sites increases cell death and release of danger signals. Journal of Controlled Release, 2018, 285, 67-80.	4.8	19
60	Real-time cell analysis of human cancer cell lines after chemotherapy with functionalized magnetic nanoparticles. Anticancer Research, 2012, 32, 1983-9.	0.5	18
61	Toxicity of Mitoxantrone-loaded Superparamagnetic Iron Oxide Nanoparticles in a HT-29 Tumour Spheroid Model. Anticancer Research, 2016, 36, 3093-101.	0.5	17
62	N-Alkylaminoferrocene-Based Prodrugs Targeting Mitochondria of Cancer Cells. Molecules, 2020, 25, 2545.	1.7	16
63	Graphene Oxide Nanosheets for Localized Hyperthermia—Physicochemical Characterization, Biocompatibility, and Induction of Tumor Cell Death. Cells, 2020, 9, 776.	1.8	16
64	Sodium and potassium urate crystals differ in their inflammatory potential. Autoimmunity, 2009, 42, 314-316.	1,2	14
65	Loading of Primary Human T Lymphocytes with Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Does Not Impair Their Activation after Polyclonal Stimulation. Cells, 2020, 9, 342.	1.8	14
66	Synthesis of Magneticâ€Nanoparticle/Ansamitocin Conjugates—Inductive Heating Leads to Decreased Cell Proliferation In Vitro and Attenuation Of Tumour Growth In Vivo. Chemistry - A European Journal, 2017, 23, 12326-12337.	1.7	13
67	Superparamagnetic Iron Oxide Nanoparticles Carrying Chemotherapeutics Improve Drug Efficacy in Monolayer and Spheroid Cell Culture by Enabling Active Accumulation. Nanomaterials, 2020, 10, 1577.	1.9	13
68	Graphene-Induced Hyperthermia (GIHT) Combined With Radiotherapy Fosters Immunogenic Cell Death. Frontiers in Oncology, 2021, 11, 664615.	1.3	13
69	Immunohistochemical Evaluation of the Role of p53 Mutation in Cervical Cancer: Ser-20 p53-Mutant Correlates with Better Prognosis. Anticancer Research, 2016, 36, 3131-7.	0.5	13
70	Nanoparticles for regenerative medicine. Nanomedicine, 2019, 14, 1929-1933.	1.7	12
71	CRP and SAP from different species have different membrane ligand specificities. Autoimmunity, 2013, 46, 347-350.	1.2	11
72	Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Enable a Stable Non-Spilling Loading of T Cells and Their Magnetic Accumulation. Cancers, 2021, 13, 4143.	1.7	11

#	Article	IF	CITATIONS
73	Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomaterialia, 2022, 141, 418-428.	4.1	11
74	Impact of Superparamagnetic Iron Oxide Nanoparticles on Vocal Fold Fibroblasts: Cell Behavior and Cellular Iron Kinetics. Nanoscale Research Letters, 2017, 12, 284.	3.1	10
75	Clearance of apo Nph induces an immunosuppressive response in pro-inflammatory type-1 and anti-inflammatory type-2 Mî \mid . Autoimmunity, 2009, 42, 275-277.	1.2	9
76	Elevated Serum Lysophosphatidylcholine in Patients with Systemic Lupus Erythematosus Impairs Phagocytosis of Necrotic Cells In Vitro. Frontiers in Immunology, 2017, 8, 1876.	2.2	9
77	Treatment with DNAse I fosters binding to nec PBMC of CRP. Autoimmunity, 2009, 42, 286-288.	1.2	8
78	Nanomedicine for cardiovascular disorders. Nanomedicine, 2019, 14, 3007-3012.	1.7	8
79	Imaging modalities using magnetic nanoparticles – overview of the developments in recent years. Nanotechnology Reviews, 2013, 2, 381-394.	2.6	6
80	SPIONs functionalized with small peptides for binding of lipopolysaccharide, a pathophysiologically relevant microbial product. Colloids and Surfaces B: Biointerfaces, 2019, 174, 95-102.	2.5	6
81	Mitoxantrone-Loaded Nanoparticles for Magnetically Controlled Tumor Therapy–Induction of Tumor Cell Death, Release of Danger Signals and Activation of Immune Cells. Pharmaceutics, 2020, 12, 923.	2.0	6
82	Non-magnetic chromatographic separation of colloidally metastable superparamagnetic iron oxide nanoparticles and suspension cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1122-1123, 83-89.	1.2	5
83	An Endoplasmic Reticulum Specific Proâ€amplifier of Reactive Oxygen Species in Cancer Cells. Angewandte Chemie, 2021, 133, 11258-11262.	1.6	5
84	SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications. ChemistrySelect, 2023, 8, 1435-1464.	0.7	5
85	Intracellular Amplifiers of Reactive Oxygen Species Affecting Mitochondria as Radiosensitizers. Cancers, 2022, 14, 208.	1.7	5
86	Nanomedicine for neuroprotection. Nanomedicine, 2019, 14, 127-130.	1.7	3
87	Magnetic Tissue Engineering for Voice Rehabilitation - First Steps in a Promising Field. Anticancer Research, 2016, 36, 3085-91.	0.5	3
88	Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles. International Journal of Nanomedicine, 0, Volume 17, 2139-2163.	3.3	3
89	Novel nanoparticulate drug delivery systems. Nanomedicine, 2016, 11, 573-576.	1.7	2
90	Journal watch: diagnostic nanoparticles. Nanomedicine, 2017, 12, 181-184.	1.7	2

#	ARTICLE	IF	CITATIONS
91	Magnetic nanoparticles for medical applications. Nanomedicine, 2017, 12, 825-829.	1.7	2
92	Innovative toxikologische Untersuchungsmethoden f $\tilde{A}^{1}\!\!/_{4}$ r Eisenoxidnanopartikel in der Nanomedizin. Chemie-Ingenieur-Technik, 2017, 89, 244-251.	0.4	2
93	[1,10]Phenanthroline based cyanine dyes as fluorescent probes for ribonucleic acids in live cells. Methods and Applications in Fluorescence, 2017, 5, 045002.	1.1	2
94	Nanomedicine for infectious diseases. Nanomedicine, 2020, 15, 1263-1267.	1.7	2
95	Radon therapy ameliorates disease progression and prolongs survival in TNF $\hat{l}\pm tg$ mice. Annals of the Rheumatic Diseases, 2012, 71, A30.2-A31.	0.5	1
96	Immune complex formation after exposure of autoantigens on the surface of secondary necrotic cells (SNEC) promotes inflammation in SLE. Annals of the Rheumatic Diseases, 2012, 71, A73.1-A73.	0.5	1
97	Imaging and quantification of SPIONs for cancer therapy with magnetic drug targeting., 2015,,.		1
98	Modulation of immune responses by nanoparticles. Nanomedicine, 2021, 16, 1925-1929.	1.7	1
99	Treat or track: nanoagents in the service of health. Nanomedicine, 2017, 12, 2715-2719.	1.7	0
100	â€~Nano-lysing' the disease process:Ânovel diagnostic and therapeutic nanoparticles. Nanomedicine, 2018, 13, 1087-1091.	1.7	0
101	Nanomedicine for vaccination and diagnosis of diseases. Nanomedicine, 2021, 16, 165-169.	1.7	0
102	Intranasal delivery of nanoparticles. Nanomedicine, 2022, , .	1.7	0