
Jana Zaumseil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3376362/publications.pdf Version: 2024-02-01

IANA ZALIMSEU

#	Article	IF	CITATIONS
1	Luminescent Defects in Singleâ€Walled Carbon Nanotubes for Applications. Advanced Optical Materials, 2022, 10, 2101576.	3.6	34
2	Ein DNAâ€basierter exzitonischer Zweikomponentenâ€Schalter auf der Grundlage von Hochleistungsâ€Diarylethenen. Angewandte Chemie, 2022, 134, .	1.6	4
3	A DNAâ€Based Two omponent Excitonic Switch Utilizing Highâ€Performance Diarylethenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
4	Enhancing Electrochemical Transistors Based on Polymer-Wrapped (6,5) Carbon Nanotube Networks with Ethylene Glycol Side Chains. ACS Applied Materials & Interfaces, 2022, 14, 8209-8217.	4.0	7
5	Absolute Quantification of sp ³ Defects in Semiconducting Single-Wall Carbon Nanotubes by Raman Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 3542-3548.	2.1	28
6	Heat and Charge Carrier Flow through Single-Walled Carbon Nanotube Films in Vertical Electrolyte-Gated Transistors: Implications for Thermoelectric Energy Conversion. ACS Applied Nano Materials, 2022, 5, 6100-6105.	2.4	1
7	Probing Carrier Dynamics in <i>sp</i> ³ -Functionalized Single-Walled Carbon Nanotubes with Time-Resolved Terahertz Spectroscopy. ACS Nano, 2022, 16, 9401-9409.	7.3	12
8	(Invited) Functionalized Polymer-Sorted Carbon Nanotube Networks for Sensing Applications. ECS Meeting Abstracts, 2022, MA2022-01, 718-718.	0.0	0
9	Probing Charge Transport in Sp ³ -Functionalized Single-Walled Carbon Nanotubes with Terahertz Spectroscopy. ECS Meeting Abstracts, 2022, MA2022-01, 757-757.	0.0	0
10	(Invited) Cavity Coupled Multi-Emitters in Carbon Nanotubes. ECS Meeting Abstracts, 2022, MA2022-01, 742-742.	0.0	0
11	New Synthetic Routes to Introduce Sp ³ -Defects in Carbon Nanotubes with a Variety of Functional Groups. ECS Meeting Abstracts, 2022, MA2022-01, 728-728.	0.0	0
12	Absorption and Emission of Chemically and Electrochemically Doped Graphene Nanoribbons. ECS Meeting Abstracts, 2022, MA2022-01, 870-870.	0.0	0
13	Emissive spin-0 triplet-pairs are a direct product of triplet–triplet annihilation in pentacene single crystals and anthradithiophene films. Nature Chemistry, 2021, 13, 163-171.	6.6	45
14	Population of Exciton–Polaritons <i>via</i> Luminescent sp ³ Defects in Single-Walled Carbon Nanotubes. ACS Photonics, 2021, 8, 182-193.	3.2	22
15	Interaction of Luminescent Defects in Carbon Nanotubes with Covalently Attached Stable Organic Radicals. ACS Nano, 2021, 15, 5147-5157.	7.3	17
16	Synthetic control over the binding configuration of luminescent sp3-defects in single-walled carbon nanotubes. Nature Communications, 2021, 12, 2119.	5.8	52
17	Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling. Matter, 2021, 4, 1391-1412.	5.0	35
18	Charge Transfer from Photoexcited Semiconducting Single-Walled Carbon Nanotubes to Wide-Bandgap Wrapping Polymer. Journal of Physical Chemistry C, 2021, 125, 8125-8136.	1.5	9

#	Article	IF	CITATIONS
19	Charge Transport in Networks of sp3-Functionalized Single-Walled Carbon Nanotubes. ECS Meeting Abstracts, 2021, MA2021-01, 583-583.	0.0	0
20	Charge Transport in and Electroluminescence from sp ³ -Functionalized Carbon Nanotube Networks. ACS Nano, 2021, 15, 10451-10463.	7.3	27
21	(Invited) Tuning the Properties of Luminescent Defects in Carbon Nanotubes for Applications. ECS Meeting Abstracts, 2021, MA2021-01, 584-584.	0.0	0
22	A Rapidly Stabilizing Water-Gated Field-Effect Transistor Based on Printed Single-Walled Carbon Nanotubes for Biosensing Applications. ACS Applied Electronic Materials, 2021, 3, 3106-3113.	2.0	28
23	Visualizing the Active Paths in Morphologically Defective Organic Thinâ€Film Transistors. Advanced Electronic Materials, 2021, 7, 2100400.	2.6	2
24	The Role of Additives in Suppressing the Degradation of Liquidâ€Exfoliated WS 2 Monolayers. Advanced Materials, 2021, 33, 2102883.	11.1	6
25	Improving electron injection and transport in polymer field-effect transistors with guanidino-functionalized aromatic n-dopants. Journal of Materials Chemistry C, 2021, 9, 7485-7493.	2.7	2
26	Molecular n-Doping of Large- and Small-Diameter Carbon Nanotube Field-Effect Transistors with Tetrakis(tetramethylguanidino)benzene. ACS Applied Electronic Materials, 2021, 3, 804-812.	2.0	11
27	Liquid Phase Exfoliation of Rubrene Single Crystals into Nanorods and Nanobelts. ACS Nano, 2021, 15, 20466-20477.	7.3	7
28	Charge transport in semiconducting carbon nanotube networks. Applied Physics Reviews, 2021, 8, .	5.5	38
29	Recent Developments and Novel Applications of Thin Film, Lightâ€Emitting Transistors. Advanced Functional Materials, 2020, 30, 1905269.	7.8	53
30	Deposition-Dependent Morphology and Infrared Vibrational Spectra of Brominated Tetraazaperopyrene Layers. Journal of Physical Chemistry C, 2020, 124, 769-779.	1.5	2
31	Spectroscopic near-infrared photodetectors enabled by strong light–matter coupling in (6,5) single-walled carbon nanotubes. Journal of Chemical Physics, 2020, 153, 201104.	1.2	9
32	Charge and Thermoelectric Transport in Polymer-Sorted Semiconducting Single-Walled Carbon Nanotube Networks. ACS Nano, 2020, 14, 15552-15565.	7.3	28
33	Spiropyranâ€Functionalized Polymer–Carbon Nanotube Hybrids for Dynamic Optical Memory Devices and UV Sensors. Advanced Electronic Materials, 2020, 6, 2000717.	2.6	18
34	Titelbild: Site‧elective Oxidation of Monolayered Liquidâ€Exfoliated WS ₂ by Shielding the Basal Plane through Adsorption of a Facial Amphiphile (Angew. Chem. 33/2020). Angewandte Chemie, 2020, 132, 13769-13769.	1.6	0
35	Ultrafast Singlet Fission and Intersystem Crossing in Halogenated Tetraazaperopyrenes. Journal of Physical Chemistry A, 2020, 124, 7857-7868.	1.1	7
36	Phenanthroline Additives for Enhanced Semiconducting Carbon Nanotube Dispersion Stability and Transistor Performance. ACS Applied Nano Materials, 2020, 3, 12314-12324.	2.4	16

#	Article	IF	CITATIONS
37	Triptycene End apped Benzothienobenzothiophene and Naphthothienobenzothiophene. Chemistry - A European Journal, 2020, 26, 12596-12605.	1.7	4
38	Siteâ€Selective Oxidation of Monolayered Liquidâ€Exfoliated WS ₂ by Shielding the Basal Plane through Adsorption of a Facial Amphiphile. Angewandte Chemie, 2020, 132, 13889-13896.	1.6	7
39	Guiding Charge Transport in Semiconducting Carbon Nanotube Networks by Local Optical Switching. ACS Applied Materials & Interfaces, 2020, 12, 28392-28403.	4.0	11
40	Preparation of WS2–PMMA composite films for optical applications. Journal of Materials Chemistry C, 2020, 8, 10805-10815.	2.7	10
41	AFM-IR and IR-SNOM for the Characterization of Small Molecule Organic Semiconductors. Journal of Physical Chemistry C, 2020, 124, 5331-5344.	1.5	29
42	Probing Mobile Charge Carriers in Semiconducting Carbon Nanotube Networks by Charge Modulation Spectroscopy. ACS Nano, 2020, 14, 2412-2423.	7.3	17
43	Siteâ€Selective Oxidation of Monolayered Liquidâ€Exfoliated WS ₂ by Shielding the Basal Plane through Adsorption of a Facial Amphiphile. Angewandte Chemie - International Edition, 2020, 59, 13785-13792.	7.2	7
44	Ultrafast Singlet Fission in Rigid Azaarene Dimers with Negligible Orbital Overlap. Journal of Physical Chemistry B, 2020, 124, 9163-9174.	1.2	12
45	Charge Modulation Spectroscopy of Pristine and sp3-Functionalized Single-Walled Carbon Nanotube Networks. ECS Meeting Abstracts, 2020, MA2020-01, 724-724.	0.0	0
46	Radiative Pumping of Exciton-Polaritons by Luminescent sp3 Defects in Single Walled Carbon Nanotubes. ECS Meeting Abstracts, 2020, MA2020-01, 670-670.	0.0	0
47	(Invited) Spontaneous and Intentional Exciton Trapping in Carbon Nanotubes. ECS Meeting Abstracts, 2020, MA2020-01, 718-718.	0.0	0
48	(Invited) Polymer-Wrapped and sp3-Functionalized (6,5) SWNTs for Charge Transport and Near-Infrared Emission. ECS Meeting Abstracts, 2020, MA2020-01, 716-716.	0.0	0
49	Improved OLED Outcoupling Using Alternative Emitters with Preferred Horizontal Orientation. , 2020, , \cdot		0
50	Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp ³ Functionalization in Organic Solvents. ACS Nano, 2019, 13, 9259-9269.	7.3	48
51	Doping-Dependent Energy Transfer from Conjugated Polyelectrolytes to (6,5) Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 22680-22689.	1.5	7
52	Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature. Nano Letters, 2019, 19, 7210-7216.	4.5	10
53	Impact of the MoS ₂ Starting Material on the Dispersion Quality and Quantity after Liquid Phase Exfoliation. Chemistry of Materials, 2019, 31, 8424-8431.	3.2	23
54	Effect of density of surface defects on photoluminescence properties in MAPbI ₃ perovskite films. Journal of Materials Chemistry C, 2019, 7, 5285-5292.	2.7	57

#	Article	IF	CITATIONS
55	Charge Transport in Mixed Semiconducting Carbon Nanotube Networks with Tailored Mixing Ratios. ACS Nano, 2019, 13, 7323-7332.	7.3	42
56	Strong light-matter interactions and exciton-polaritons in organic materials. , 2019, , 281-307.		4
57	The effect of side-chain length on the microstructure and processing window of zone-cast naphthalene-based bispentalenes. Journal of Materials Chemistry C, 2019, 7, 13493-13501.	2.7	14
58	Absence of Charge Transfer State Enables Very Low <i>V</i> _{OC} Losses in SWCNT:Fullerene Solar Cells. Advanced Energy Materials, 2019, 9, 1801913.	10.2	25
59	Goldâ€Catalyzed Facile Synthesis and Crystal Structures of Benzeneâ€/Naphthaleneâ€Based Bispentalenes as Organic Semiconductors. Chemistry - A European Journal, 2019, 25, 216-220.	1.7	31
60	Electrolyteâ€Gated nâ€Type Transistors Produced from Aqueous Inks of WS ₂ Nanosheets. Advanced Functional Materials, 2019, 29, 1804387.	7.8	48
61	Effect of Crystal Grain Orientation on the Rate of Ionic Transport in Perovskite Polycrystalline Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 2490-2499.	4.0	29
62	Semiconducting Singleâ€Walled Carbon Nanotubes or Very Rigid Conjugated Polymers: A Comparison. Advanced Electronic Materials, 2019, 5, 1800514.	2.6	18
63	Brightening of Long, Polymer-Wrapped Carbon Nanotubes By Large Scale sp3 Functionalization. ECS Meeting Abstracts, 2019, , .	0.0	0
64	Improved Electron Injection and Transport in Semiconducting Polymers By Doping with Guanidino-Functionalized Aromatic Compounds. ECS Meeting Abstracts, 2019, , .	0.0	0
65	(Invited) Tuning Transport and Emission Properties of Sorted Carbon Nanotube Networks. ECS Meeting Abstracts, 2019, , .	0.0	0
66	Charge Transport in Mixed Semiconducting SWCNT Networks with Tailored Diameter Distributions. ECS Meeting Abstracts, 2019, , .	0.0	0
67	(Invited) Super-Localization of Excitons in Carbon Nanotubes at Cryogenic Temperatures. ECS Meeting Abstracts, 2019, , .	0.0	0
68	Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors. Sensors and Actuators B: Chemical, 2018, 255, 1507-1516.	4.0	62
69	Infrared Organic Lightâ€Emitting Diodes with Carbon Nanotube Emitters. Advanced Materials, 2018, 30, e1706711.	11.1	54
70	Ultrastrong Coupling of Electrically Pumped Nearâ€Infrared Excitonâ€Polaritons in High Mobility Polymers. Advanced Optical Materials, 2018, 6, 1700962.	3.6	38
71	From Broadband to Electrochromic Notch Filters with Printed Monochiral Carbon Nanotubes. ACS Applied Materials & Interfaces, 2018, 10, 11135-11142.	4.0	36
72	Dense Carbon Nanotube Films as Transparent Electrodes in Lowâ€Voltage Polymer and All arbon Transistors. Advanced Electronic Materials, 2018, 4, 1700331.	2.6	9

#	Article	IF	CITATIONS
73	Electroluminescence Generation in PbS Quantum Dot Light-Emitting Field-Effect Transistors with Solid-State Gating. ACS Nano, 2018, 12, 12805-12813.	7.3	47
74	Efficient n-Doping and Hole Blocking in Single-Walled Carbon Nanotube Transistors with 1,2,4,5-Tetrakis(tetramethylguanidino)ben-zene. ACS Nano, 2018, 12, 5895-5902.	7.3	40
75	Vertical Electrolyte-Gated Transistors Based on Printed Single-Walled Carbon Nanotubes. ACS Applied Nano Materials, 2018, 1, 3616-3624.	2.4	24
76	Temperature-Dependent Charge Transport in Polymer-Sorted Semiconducting Carbon Nanotube Networks with Different Diameter Distributions. Journal of Physical Chemistry C, 2018, 122, 19886-19896.	1.5	45
77	Radiative Pumping and Propagation of Plexcitons in Diffractive Plasmonic Crystals. Nano Letters, 2018, 18, 4927-4933.	4.5	25
78	Trion-Polariton Formation in Single-Walled Carbon Nanotube Microcavities. ACS Photonics, 2018, 5, 2074-2080.	3.2	26
79	(Invited) Dense Layers of (6,5) Nanotubes for Optical and Charge Transport Applications. ECS Meeting Abstracts, 2018, , .	0.0	0
80	Direct visualization of percolation paths in carbon nanotube/polymer composites. Organic Electronics, 2017, 45, 151-158.	1.4	12
81	ZA-derived phonons in the Raman spectra of single-walled carbon nanotubes. Carbon, 2017, 117, 360-366.	5.4	17
82	Raman spectroscopy and microscopy of electrochemically and chemically doped high-mobility semiconducting polymers. Journal of Materials Chemistry C, 2017, 5, 6176-6184.	2.7	57
83	Aerosolâ€Jet Printing of Polymerâ€Sorted (6,5) Carbon Nanotubes for Fieldâ€Effect Transistors with High Reproducibility. Advanced Electronic Materials, 2017, 3, 1700080.	2.6	77
84	Fitting Single-Walled Carbon Nanotube Optical Spectra. ACS Omega, 2017, 2, 1163-1171.	1.6	58
85	Doping-dependent G-mode shifts of small diameter semiconducting single-walled carbon nanotubes. Carbon, 2017, 118, 261-267.	5.4	36
86	Breakdown of Far-Field Raman Selection Rules by Light–Plasmon Coupling Demonstrated by Tip-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2017, 8, 5462-5471.	2.1	16
87	Photocurrent spectroscopy of dye-sensitized carbon nanotubes. Nanoscale, 2017, 9, 11205-11213.	2.8	9
88	Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nature Materials, 2017, 16, 911-917.	13.3	106
89	Controlled Molecular Orientation of Inkjet Printed Semiconducting Polymer Fibers by Crystallization Templating. Chemistry of Materials, 2017, 29, 10150-10158.	3.2	13
90	Extracting the field-effect mobilities of random semiconducting single-walled carbon nanotube networks: A critical comparison of methods. Applied Physics Letters, 2017, 111, .	1.5	20

#	Article	IF	CITATIONS
91	Multispectral electroluminescence enhancement of single-walled carbon nanotubes coupled to periodic nanodisk arrays. Optics Express, 2017, 25, 18092.	1.7	4
92	Label-Free Immunodetection in High Ionic Strength Solutions Using Carbon Nanotube Transistors with Nanobody Receptors. Proceedings (mdpi), 2017, 1, .	0.2	3
93	Modeling carrier density dependent charge transport in semiconducting carbon nanotube networks. Physical Review Materials, 2017, 1, .	0.9	35
94	Hybrid Modulationâ€Doping of Solutionâ€Processed Ultrathin Layers of ZnO Using Molecular Dopants. Advanced Materials, 2016, 28, 3952-3959.	11.1	16
95	Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon, 2016, 105, 593-599.	5.4	165
96	Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals. Nano Letters, 2016, 16, 3278-3284.	4.5	31
97	Plasmonic Crystals for Strong Light–Matter Coupling in Carbon Nanotubes. Nano Letters, 2016, 16, 6504-6510.	4.5	59
98	Probing the Diameter Limit of Single Walled Carbon Nanotubes in SWCNT: Fullerene Solar Cells. Advanced Energy Materials, 2016, 6, 1600890.	10.2	50
99	Selfâ€Assembled Monolayer Dielectrics for Lowâ€Voltage Carbon Nanotube Transistors with Controlled Network Density. Advanced Materials Interfaces, 2016, 3, 1600215.	1.9	19
100	Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities. ACS Photonics, 2016, 3, 2225-2230.	3.2	29
101	Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nature Communications, 2016, 7, 13078.	5.8	91
102	Photo- and electroluminescence of ambipolar, high-mobility, donor-acceptor polymers. Organic Electronics, 2016, 32, 220-227.	1.4	32
103	Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes. ACS Applied Materials & Interfaces, 2016, 8, 5571-5579.	4.0	48
104	High-Quality Reduced Graphene Oxide by CVD-Assisted Annealing. Journal of Physical Chemistry C, 2016, 120, 3036-3041.	1.5	76
105	On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position. ACS Photonics, 2016, 3, 1-7.	3.2	12
106	Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors. Applied Physics Letters, 2015, 107, .	1.5	54
107	Light-Emitting Quantum Dot Transistors: Emission at High Charge Carrier Densities. Nano Letters, 2015, 15, 1822-1828.	4.5	66
108	Single-walled carbon nanotube networks for flexible and printed electronics. Semiconductor Science and Technology, 2015, 30, 074001.	1.0	91

#	Article	IF	CITATIONS
109	Photoluminescence enhancement of aligned arrays of single-walled carbon nanotubes by polymer transfer. Nanoscale, 2015, 7, 16715-16720.	2.8	10
110	Controlling the diameter of aligned single-walled carbon nanotubes on quartz via catalyst reduction time. Carbon, 2015, 95, 452-459.	5.4	20
111	Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors. ACS Applied Materials & Interfaces, 2015, 7, 682-689.	4.0	110
112	Mapping Chargeâ€Carrier Density Across the p–n Junction in Ambipolar Carbonâ€Nanotube Networks by Raman Microscopy. Advanced Materials, 2014, 26, 7986-7992.	11.1	13
113	Celluloseâ€Based Ionogels for Paper Electronics. Advanced Functional Materials, 2014, 24, 625-634.	7.8	158
114	Electronic Control of Circularly Polarized Light Emission. Science, 2014, 344, 702-703.	6.0	21
115	P3HT and Other Polythiophene Field-Effect Transistors. Advances in Polymer Science, 2014, , 107-137.	0.4	26
116	Epitaxial Growth of PbSe Quantum Dots on MoS ₂ Nanosheets and their Nearâ€Infrared Photoresponse. Advanced Functional Materials, 2014, 24, 5798-5806.	7.8	134
117	Spray-coatable ionogels based on silane-ionic liquids for low voltage, flexible, electrolyte-gated organic transistors. Journal of Materials Chemistry C, 2014, 2, 2423-2430.	2.7	28
118	Trion Electroluminescence from Semiconducting Carbon Nanotubes. ACS Nano, 2014, 8, 8477-8486.	7.3	81
119	Generalized enhancement of charge injection in bottom contact/top gate polymer field-effect transistors with single-walled carbon nanotubes. Organic Electronics, 2014, 15, 809-817.	1.4	15
120	Controlled In Situ PbSe Quantum Dot Growth around Single-Walled Carbon Nanotubes: A Noncovalent PbSe-SWNT Hybrid Structure. Chemistry of Materials, 2013, 25, 2663-2669.	3.2	9
121	Mapping Charge Transport by Electroluminescence in Chirality-Selected Carbon Nanotube Networks. ACS Nano, 2013, 7, 7428-7435.	7.3	55
122	Ambipolar, low-voltage and low-hysteresis PbSe nanowire field-effect transistors by electrolyte gating. Nanoscale, 2013, 5, 4230.	2.8	18
123	High-Mobility ZnO Nanorod Field-Effect Transistors by Self-Alignment and Electrolyte-Gating. ACS Applied Materials & Interfaces, 2013, 5, 1656-1662.	4.0	67
124	In Situ Raman Mapping of Charge Carrier Distribution in Electrolyte-Gated Carbon Nanotube Network Field-Effect Transistors. Journal of Physical Chemistry C, 2013, 117, 26361-26370.	1.5	17
125	Light-emitting polymer/carbon nanotube hybrid transistors: below and above the percolation limit. Proceedings of SPIE, 2013, , .	0.8	0
126	Organic and Hybrid Materials for Flexible Electronics. Advanced Materials, 2013, 25, 4208-4209.	11.1	29

#	Article	IF	CITATIONS
127	Ionic Liquids for Electrolyte-Gating of ZnO Field-Effect Transistors. Journal of Physical Chemistry C, 2012, 116, 13536-13544.	1.5	111
128	Effect of Polymer Molecular Weight and Solution Parameters on Selective Dispersion of Single-Walled Carbon Nanotubes. ACS Macro Letters, 2012, 1, 815-819.	2.3	91
129	Enhanced Ambipolar Charge Injection with Semiconducting Polymer/Carbon Nanotube Thin Films for Light-Emitting Transistors. ACS Nano, 2012, 6, 539-548.	7.3	65
130	Expanding the Chemical Versatility of Colloidal Nanocrystals Capped with Molecular Metal Chalcogenide Ligands. Journal of the American Chemical Society, 2010, 132, 10085-10092.	6.6	263
131	Theoretical and experimental studies of Schottky diodes that use aligned arrays of single-walled carbon nanotubes. Nano Research, 2010, 3, 444-451.	5.8	18
132	Electroluminescence from Electrolyte-Gated Carbon Nanotube Field-Effect Transistors. ACS Nano, 2009, 3, 2225-2234.	7.3	54
133	Electron–Hole Recombination in Uniaxially Aligned Semiconducting Polymers. Advanced Functional Materials, 2008, 18, 3630-3637.	7.8	48
134	Electroluminescence imaging and microstructure of organic light-emitting field-effect transistors. Applied Physics Letters, 2008, 92, .	1.5	40
135	Quantum efficiency of ambipolar light-emitting polymer field-effect transistors. Journal of Applied Physics, 2008, 103, .	1.1	89
136	Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes. Applied Physics Letters, 2007, 90, 193506.	1.5	223
137	Ambipolar Transport in Organic Conjugated Materials. Advanced Materials, 2007, 19, 1791-1799.	11.1	296
138	Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chemical Reviews, 2007, 107, 1296-1323.	23.0	2,010
139	Spatial control of the recombination zone in ambipolar light-emitting polymer transistors. , 2006, , .		1
140	Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Materials, 2006, 5, 69-74.	13.3	534
141	Efficient Top-Gate, Ambipolar, Light-Emitting Field-Effect Transistors Based on a Green-Light-Emitting Polyfluorene. Advanced Materials, 2006, 18, 2708-2712.	11.1	336
142	Effects of Packing Structure on the Optoelectronic and Charge Transport Properties in Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). Journal of the American Chemical Society, 2005, 127, 12890-12899.	6.6	320
143	General observation of n-type field-effect behaviour in organic semiconductors. Nature, 2005, 434, 194-199.	13.7	2,172
144	Soft-Contact Optical Lithography Using Transparent Elastomeric Stamps and Application to Nanopatterned Organic Light-Emitting Devices. Advanced Functional Materials, 2005, 15, 1435-1439.	7.8	49

#	Article	IF	CITATIONS
145	Field-effect transistors made from macroscopic single crystals of tetracene and related semiconductors on polymer dielectrics. Journal of Materials Research, 2004, 19, 1995-1998.	1.2	18
146	High-Efficiency Soft-Contact-Laminated Polymer Light-Emitting Devices with Patterned Electrodes. Advanced Materials, 2004, 16, 2040-2045.	11.1	39
147	Three-Dimensional Nanofabrication with Rubber Stamps and Conformable Photomasks. Advanced Materials, 2004, 16, 1369-1373.	11.1	123
148	Interaction of caesium with poly(p-phenylene vinylene) surfaces. Applied Surface Science, 2004, 234, 120-125.	3.1	1
149	Organic light-emitting diodes formed by soft contact lamination. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 429-433.	3.3	126
150	Improved Surface Chemistries, Thin Film Deposition Techniques, and Stamp Designs for Nanotransfer Printing. Langmuir, 2004, 20, 6871-6878.	1.6	116
151	Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals. Science, 2004, 303, 1644-1646.	6.0	1,559
152	Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing. Nano Letters, 2003, 3, 1223-1227.	4.5	262
153	Tunable organic transistors that use microfluidic source and drain electrodes. Applied Physics Letters, 2003, 83, 2067-2069.	1.5	19
154	Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. Journal of Applied Physics, 2003, 93, 6117-6124.	1.1	307
155	Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Applied Physics Letters, 2003, 82, 793-795.	1.5	129
156	Nanoscale Organic Electronic Devices Formed by Lamination With Stamps. Materials Research Society Symposia Proceedings, 2002, 737, 600.	0.1	0
157	Imaging the activity of nitrate reductase by means of a scanning electrochemical microscope. Fresenius' Journal of Analytical Chemistry, 2000, 367, 352-355.	1.5	23
158	Synthesis and molecular structure of bis(2-benzoylimino-benzimidazolinato)copper(II)-dimethylformamide — a metal-containing guanidine derivative. Inorganic Chemistry Communication, 1999, 2, 184-187.	1.8	9
159	Modelling Self-Absorption Induced Red-Shift of the Photoluminescence of Perovskite Thin Films to Estimate the Internal Photoluminescence Quantum Efficiency and Escape Probability. , 0, , .		0
160	Evidence for a Polariton-Mediated Biexciton Transition in Single-Walled Carbon Nanotubes. ACS Photonics, 0, , .	3.2	1