Delores Knipp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3376045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electromagnetic energy input and dissipation. , 2022, , 301-355.		2
2	Violation of Hemispheric Symmetry in Integrated Poynting Flux via an Empirical Model. Geophysical Research Letters, 2022, 49, .	4.0	7
3	Magnetosphereâ€lonosphere Coupling via Prescribed Fieldâ€Aligned Current Simulated by the TIEGCM. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	8
4	Timelines as a tool for learning about space weather storms. Journal of Space Weather and Space Climate, 2021, 11, 29.	3.3	19
5	The Intensity and Evolution of the Extreme Solar and Geomagnetic Storms in 1938 January. Astrophysical Journal, 2021, 909, 197.	4.5	9
6	Thank You to Our 2020 Reviewers. Space Weather, 2021, 19, e2021SW002756.	3.7	0
7	Recreating the Horizontal Magnetic Field at Colaba During the Carrington Event With Geospace Simulations. Space Weather, 2021, 19, e2020SW002585.	3.7	8
8	ASHLEY: A New Empirical Model for the High‣atitude Electron Precipitation and Electric Field. Space Weather, 2021, 19, e2020SW002671.	3.7	17
9	Hemispheric Asymmetries in Poynting Flux Derived From DMSP Spacecraft. Geophysical Research Letters, 2021, 48, e2021GL094781.	4.0	24
10	Thank You to Our 2019 Reviewers. Space Weather, 2020, 18, e2020SW002481.	3.7	0
11	Evidence for Drag Coefficient Modeling Errors near and Above the Oxygen-to-Helium Transition. Journal of Spacecraft and Rockets, 2020, 57, 1246-1263.	1.9	7
12	Importance of Regionalâ€Scale Auroral Precipitation and Electrical Field Variability to the Stormâ€Time Thermospheric Temperature Enhancement and Inversion Layer (TTEIL) in the Antarctic E Region. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028224.	2.4	9
13	Event Studies of Highâ€Latitude FACs With Inverse and Assimilative Analysis of AMPERE Magnetometer Data. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027266.	2.4	3
14	The Extreme Space Weather Event in 1903 October/November: An Outburst from the Quiet Sun. Astrophysical Journal Letters, 2020, 897, L10.	8.3	36
15	Modes of (FACs) Variability and Their Hemispheric Asymmetry Revealed by Inverse and Assimilative Analysis of Iridium Magnetometer Data. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027265.	2.4	13
16	Impacts of Binning Methods on Highâ€Latitude Electrodynamic Forcing: Static Versus Boundaryâ€Oriented Binning Methods. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027270.	2.4	7
17	Sunspot observations by Hisako Koyama: 1945–1996. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4513-4527.	4.4	13
18	What Do the New 2018 HIWIND Thermospheric Wind Observations Tell Us About Highâ€Latitude Ionâ€Neutral Coupling During Daytime?. Journal of Geophysical Research: Space Physics, 2019, 124, 6173-6181.	2.4	6

#	Article	IF	CITATIONS
19	An EOFs Study of Thermospheric Nitric Oxide Flux Based on TIEGCM simulations. Journal of Geophysical Research: Space Physics, 2019, 124, 9695-9708.	2.4	9
20	HIWIND Observation of Summer Season Polar Cap Thermospheric Winds. Journal of Geophysical Research: Space Physics, 2019, 124, 9270-9277.	2.4	6
21	Temporal and Spatial Evolutions of a Large Sunspot Group and Great Auroral Storms Around the Carrington Event in 1859. Space Weather, 2019, 17, 1553-1569.	3.7	68
22	The 2019 National Space Weather Strategy and Action Plan and Beyond. Space Weather, 2019, 17, 794-795.	3.7	13
23	Thank You to Our 2018 Peer Reviewers. Space Weather, 2019, 17, 372-374.	3.7	0
24	Understanding the Behaviors of Thermospheric Nitric Oxide Cooling During the 15 May 2005 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2019, 124, 2113-2126.	2.4	19
25	Fall 2018 AGU Editors' Highlights: Living Within the Sun's Stormy Atmosphere. Space Weather, 2019, 17, 3-5.	3.7	0
26	Effects of Nearly Frontal and Highly Inclined Interplanetary Shocks on Highâ€Latitude Fieldâ€Aligned Currents (FACs). Space Weather, 2019, 17, 1659-1673.	3.7	9
27	Effects of Energetic Electron and Proton Precipitations on Thermospheric Nitric Oxide Cooling During Shockâ€Led Interplanetary Coronal Mass Ejections. Journal of Geophysical Research: Space Physics, 2019, 124, 8125-8137.	2.4	3
28	Space Weather Journal: Into the Future. Space Weather, 2019, 17, 1382-1383.	3.7	0
29	Spaceâ€Based Sentinels for Measurement of Infrared Cooling in the Thermosphere for Space Weather Nowcasting and Forecasting. Space Weather, 2018, 16, 363-375.	3.7	20
30	Advances in Space Weather Data Interpretation and Simulations. Space Weather, 2018, 16, 198-199.	3.7	0
31	The Reprise Special Collection for the 2001 Space Weather Monograph. Space Weather, 2018, 16, 334-340.	3.7	0
32	Thank You to Space Weather Peer Reviewers. Space Weather, 2018, 16, 424-427.	3.7	0
33	Understanding the Global Variability in Thermospheric Nitric Oxide Flux Using Empirical Orthogonal Functions (EOFs). Journal of Geophysical Research: Space Physics, 2018, 123, 4150-4170.	2.4	20
34	A Comparison Study of NO Cooling Between TIMED/SABER Measurements and TIEGCM Simulations. Journal of Geophysical Research: Space Physics, 2018, 123, 8714-8729.	2.4	25
35	On the Littleâ€Known Consequences of the 4 August 1972 Ultraâ€Fast Coronal Mass Ejecta: Facts, Commentary, and Call to Action. Space Weather, 2018, 16, 1635-1643.	3.7	49
36	Communicating Uncertainty and Reliability in Space Weather Data, Models, and Applications. Space Weather, 2018, 16, 1453-1454.	3.7	7

#	Article	IF	CITATIONS
37	Poynting Flux in the Dayside Polar Cap Boundary Regions From DMSP F15 Satellite Measurements. Journal of Geophysical Research: Space Physics, 2018, 123, 6948-6956.	2.4	7
38	Thermospheric nitric oxide response to shockâ€led storms. Space Weather, 2017, 15, 325-342.	3.7	57
39	A new DMSP magnetometer and auroral boundary data set and estimates of fieldâ€aligned currents in dynamic auroral boundary coordinates. Journal of Geophysical Research: Space Physics, 2017, 122, 9068-9079.	2.4	34
40	Essential science for understanding risks from radiation for airline passengers and crews. Space Weather, 2017, 15, 549-552.	3.7	13
41	Ms. Hisako Koyama: From Amateur Astronomer to Longâ€Term Solar Observer. Space Weather, 2017, 15, 1215-1221.	3.7	8
42	On Space Weather During a Total Eclipse. Space Weather, 2017, 15, 1092-1092.	3.7	0
43	Dual EÂ×ÂB flow responses in the dayside ionosphere to a sudden IMF By rotation. Geophysical Research Letters, 2017, 44, 6525-6533.	4.0	3
44	SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Crossâ€Polar Cap Potential. Space Weather, 2017, 15, 1567-1587.	3.7	44
45	Maintaining a Strong Signal and Strong Impact. Space Weather, 2017, 15, 1560-1561.	3.7	0
46	Long-lasting Extreme Magnetic Storm Activities in 1770 Found in Historical Documents. Astrophysical Journal Letters, 2017, 850, L31.	8.3	49
47	Space Weather Editors in Transition: Hail and Farewell. Space Weather, 2017, 15, 279-279.	3.7	0
48	Thank You to Space Weather Peer Reviewers. Space Weather, 2017, 15, 542-544.	3.7	0
49	New DMSP database of precipitating auroral electrons and ions. Journal of Geophysical Research: Space Physics, 2017, 122, 9056-9067.	2.4	55
50	Data Citation and Availability: Striking a Balance Between the Ideal and the Practical. Space Weather, 2016, 14, 919-920.	3.7	14
51	The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses. Space Weather, 2016, 14, 614-633.	3.7	81
52	Global Positioning System Energetic Particle Data: The Next Space Weather Data Revolution. Space Weather, 2016, 14, 526-527.	3.7	2
53	Recognizing Reviewers and Contributors. Space Weather, 2016, 14, 272-274.	3.7	0
54	Highâ€latitude ionospheric conductivity variability in three dimensions. Geophysical Research Letters, 2016. 43. 7867-7877.	4.0	14

#	Article	IF	CITATIONS
55	GEM EDAR challenge: Poynting flux at DMSP and modeled Joule heat. Space Weather, 2016, 14, 113-135.	3.7	20
56	Optimal interpolation analysis of highâ€latitude ionospheric Hall and Pedersen conductivities: Application to assimilative ionospheric electrodynamics reconstruction. Journal of Geophysical Research: Space Physics, 2016, 121, 4898-4923.	2.4	32
57	Challenges associated with nearâ€Earth nightside current. Journal of Geophysical Research: Space Physics, 2016, 121, 6763-6768.	2.4	15
58	Advances in Space Weather Ensemble Forecasting. Space Weather, 2016, 14, 52-53.	3.7	25
59	A largeâ€scale view of Space Technology 5 magnetometer response to solar wind drivers. Earth and Space Science, 2015, 2, 115-124.	2.6	5
60	Synthesis of Geomagnetically Induced Currents: Commentary and Research. Space Weather, 2015, 13, 727-729.	3.7	22
61	Correlation between Poynting flux and soft electron precipitation in the dayside polar cap boundary regions. Journal of Geophysical Research: Space Physics, 2015, 120, 9102-9109.	2.4	12
62	A fast, parameterized model of upper atmospheric ionization rates, chemistry, and conductivity. Journal of Geophysical Research: Space Physics, 2015, 120, 4936-4949.	2.4	18
63	Forward to space weather collection on geomagnetically induced currents: Commentary and research. Space Weather, 2015, 13, 742-746.	3.7	9
64	Celebrating Accomplishments and Anniversaries of Space Weather Observations and Forecasting. Space Weather, 2015, 13, 357-358.	3.7	1
65	Modes of high″atitude auroral conductance variability derived from DMSP energetic electron precipitation observations: Empirical orthogonal function analysis. Journal of Geophysical Research: Space Physics, 2015, 120, 11,013.	2.4	37
66	Space Weather and Citizen Science. Space Weather, 2015, 13, 97-98.	3.7	6
67	Appreciation of Space Weather Peer Reviewers for 2014. Space Weather, 2015, 13, 395-395.	3.7	0
68	Inverse procedure for highâ€latitude ionospheric electrodynamics: Analysis of satelliteâ€borne magnetometer data. Journal of Geophysical Research: Space Physics, 2015, 120, 5241-5251.	2.4	22
69	Improved Polar and Geosynchronous Satellite Data Sets Available in Common Data Format at the Coordinated Data Analysis Web. Space Weather, 2015, 13, 254-256.	3.7	9
70	Now Is the Time to be Heard!. Space Weather, 2015, 13, 251-252.	3.7	0
71	Impact of equinoctial high-speed stream structures on thermospheric responses. Space Weather, 2014, 12, 277-297.	3.7	20
72	Comparison of magnetic perturbation data from LEO satellite constellations: Statistics of DMSP and AMPERE. Space Weather, 2014, 12, 2-23.	3.7	33

#	Article	IF	CITATIONS
73	Space Weather Journal: Retrospective and Prospective. Space Weather, 2014, 12, 567-567.	3.7	Ο
74	Theoretical study: Influence of different energy sources on the cusp neutral density enhancement. Journal of Geophysical Research: Space Physics, 2013, 118, 2340-2349.	2.4	61
75	Thermospheric damping response to sheathâ€enhanced geospace storms. Geophysical Research Letters, 2013, 40, 1263-1267.	4.0	53
76	Anomalously low geomagnetic energy inputs during 2008 solar minimum. Journal of Geophysical Research, 2012, 117, .	3.3	22
77	Review of "Future Global Shocks: Geomagnetic Storms― Space Weather, 2012, 10, n/a-n/a.	3.7	1
78	The relation between dayside local Poynting flux enhancement and cusp reconnection. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	39
79	Rapid response of the thermosphere to variations in Joule heating. Journal of Geophysical Research, 2009, 114, .	3.3	50
80	Energetics of magnetic storms driven by corotating interaction regions: A study of geoeffectiveness. Geophysical Monograph Series, 2006, , 113-124.	0.1	52
81	Re: The Use of a Knowledge Survey as an Indicator of Student Learning in an Introductory Biology Course. CBE Life Sciences Education, 2006, 5, 313-314.	2.3	10
82	The Important Role of Data Centers in Space Climate and Weather. Space Weather, 2006, 4, n/a-n/a.	3.7	0
83	Simulating Realistic Satellite Orbits in the Undergraduate Classroom. Physics Teacher, 2005, 43, 452-455.	0.3	4
84	Direct and Indirect Thermospheric Heating Sources for Solar Cycles 21–23. Solar Physics, 2004, 224, 495-505.	2.5	143
85	4: The Knowledge Survey: A Tool for All Reasons. To Improve the Academy, 2003, 21, 59-78.	0.4	61
86	A large-scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. Journal of Geophysical Research, 2002, 107, SIA 5-1.	3.3	81
87	Joule heating patterns as a function of polar cap index. Journal of Geophysical Research, 2002, 107, SIA 8-1.	3.3	55
88	Hemispheric asymmetries in ionospheric electrodynamics during the solar wind void of 11 May 1999. Geophysical Research Letters, 2000, 27, 4013-4016.	4.0	10
89	Polar cap index as a proxy for hemispheric Joule heating. Geophysical Research Letters, 1999, 26, 1101-1104.	4.0	74
90	Polar cap contraction associated with the leading edge of a magnetic cloud. Geophysical Research Letters, 1996, 23, 305-308.	4.0	2

#	Article	IF	CITATIONS
91	Variations in the polar cap area during intervals of substorm activity on 20-21 March 1990 deduced from AMIE convection patterns. Annales Geophysicae, 1996, 14, 879-887.	1.6	31
92	lonospheric convection response to slow, strong variations in a northward interplanetary magnetic field: A case study for January 14, 1988. Journal of Geophysical Research, 1993, 98, 19273-19292.	3.3	75
93	lonospheric convection response to changing IMF direction. Geophysical Research Letters, 1991, 18, 721-724.	4.0	67
94	Reply to the Comment by Lockwood and Cowley on "Ionospheric convection response to changing IMF direction― Geophysical Research Letters, 1991, 18, 2175-2176.	4.0	2
95	Electrodynamic patterns for September 19, 1984. Journal of Geophysical Research, 1989, 94, 16913-16923.	3.3	37
96	"Thermospheric dynamics during September 18–19, 1984: 1. Model simulations"". Journal of Geophysical Research, 1989, 94, 16925-16944.	3.3	96