Tomasz Goslinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/337597/publications.pdf

Version: 2024-02-01

103 papers 3,190 citations

218677 26 h-index 52 g-index

107 all docs

107 docs citations

107 times ranked

3400 citing authors

#	Article	IF	CITATIONS
1	Cationic porphyrazines with morpholinoethyl substituents $\hat{a} \in \text{``Syntheses'}$, optical properties, and photocytotoxicities. Dyes and Pigments, 2022, 197, 109937.	3.7	7
2	Simple modification of titanium(IV) oxide for the preparation of a reusable photocatalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 276, 115559.	3.5	10
3	Promising Photocytotoxicity of Water-Soluble Phtalocyanine against Planktonic and Biofilm Pseudomonas aeruginosa Isolates from Lower Respiratory Tract and Chronic Wounds. Applied Sciences (Switzerland), 2022, 12, 3707.	2.5	O
4	Liposomal Nanoformulation as a Carrier for Curcumin and pEGCGâ€"Study on Stability and Anticancer Potential. Nanomaterials, 2022, 12, 1274.	4.1	15
5	Gallic Acid-Functionalized, TiO2-Based Nanomaterialâ€"Preparation, Physicochemical and Biological Properties. Materials, 2022, 15, 4177.	2.9	1
6	Dialdehyde Starch Nanocrystals as a Novel Cross-Linker for Biomaterials Able to Interact with Human Serum Proteins. International Journal of Molecular Sciences, 2022, 23, 7652.	4.1	9
7	Synthesis of sulfanyl porphyrazines with bulky peripheral substituents – Evaluation of their photochemical properties and biological activity. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405, 112964.	3.9	6
8	Modeling the photodynamic effect in 2D versus 3D cell culture under normoxic and hypoxic conditions. Free Radical Biology and Medicine, 2021, 162, 309-326.	2.9	14
9	In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Medicinal Chemistry Research, 2021, 30, 834-846.	2.4	54
10	Photochemical properties and photocytotoxicities against wound bacteria of sulfanyl porphyrazines with bulky peripheral substituents. Journal of Organometallic Chemistry, 2021, 934, 121669.	1.8	8
11	Dendrimers against fungi – A state of the art review. Journal of Controlled Release, 2021, 330, 599-617.	9.9	24
12	Synthesis and Physicochemical Properties of [(1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy]-thiophen-5-yl-substituted Tetrapyrazinoporphyrazine with Magnesium(II) Ion. Applied Sciences (Switzerland), 2021, 11, 2576.	2.5	1
13	Sulfanyl Porphyrazines with Morpholinylethyl Peripheryâ€"Synthesis, Electrochemistry, and Photocatalytic Studies after Deposition on Titanium(IV) Oxide P25 Nanoparticles. Molecules, 2021, 26, 2280.	3.8	8
14	Nipagin-Functionalized Porphyrazine and Phthalocyanineâ€"Synthesis, Physicochemical Characterization and Toxicity Study after Deposition on Titanium Dioxide Nanoparticles P25. Molecules, 2021, 26, 2657.	3.8	6
15	Current View on Green Tea Catechins Formulations, Their Interactions with Selected Drugs, and Prospective Applications for Various Health Conditions. Applied Sciences (Switzerland), 2021, 11, 4905.	2.5	19
16	Photochemical properties and promising activity against staphylococci of sulfanyl porphyrazines with dendrimeric moieties. Inorganica Chimica Acta, 2021, 521, 120321.	2.4	6
17	Titanium Dioxide-Based Photocatalysts for Degradation of Emerging Contaminants including Pharmaceutical Pollutants. Applied Sciences (Switzerland), 2021, 11, 8674.	2.5	34
18	Spectroscopic and quantum chemical study of phthalocyanines with 1,4,7-trioxanonyl moieties. Journal of Molecular Structure, 2020, 1203, 127371.	3.6	11

#	Article	IF	Citations
19	Phthalocyanine-Grafted Titania Nanoparticles for Photodegradation of Ibuprofen. Catalysts, 2020, 10, 1328.	3.5	12
20	Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications. Materials, 2020, 13, 3413.	2.9	62
21	Photodynamic Activity of Tribenzoporphyrazines with Bulky Periphery against Wound Bacteria. International Journal of Molecular Sciences, 2020, 21, 6145.	4.1	11
22	Photosensitizing potential of tailored magnetite hybrid nanoparticles functionalized with levan and zinc (II) phthalocyanine. Applied Surface Science, 2020, 524, 146602.	6.1	20
23	Titanium Dioxide Nanoparticles in Food and Personal Care Products—What Do We Know about Their Safety?. Nanomaterials, 2020, 10, 1110.	4.1	126
24	Electrocatalytic NADH Sensing using Electrodes Modified with 2â€[2â€(4â€Nitrophenoxy)ethoxy]ethylthioâ€Substituted Porphyrazine/Singleâ€Walled Carbon Nanotube Hybrids. ChemElectroChem, 2020, 7, 2838-2850.	3.4	14
25	Electrochemical and catalytic assessment of peripheral bromoaryl-substituted manganese and iron porphyrazines. Dyes and Pigments, 2020, 178, 108370.	3.7	6
26	S-seco-porphyrazine as a new member of the seco-porphyrazine family $\hat{a} \in \text{``Synthesis'}$, characterization and photocytotoxicity against cancer cells. Bioorganic Chemistry, 2020, 96, 103634.	4.1	11
27	Role of Curcumin and (â^')-Epigallocatechin-3-O-Gallate in Bladder Cancer Treatment: A Review. Cancers, 2020, 12, 1801.	3.7	23
28	Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials, 2020, 10, 387.	4.1	333
29	Tribenzoporphyrazines with dendrimeric peripheral substituents and their promising photocytotoxic activity against Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 2020, 204, 111803.	3.8	12
30	CHITOSAN-DERIVATIVES IN COMBINATIONS WITH SELECTED PORPHYRINOIDS AS NOVEL HYBRID MATERIALS FOR MEDICINE AND PHARMACY. Progress on Chemistry and Application of Chitin and Its Derivatives, 2020, XXV, 63-78.	0.1	1
31	Reduced graphene oxide/iron(II) porphyrazine hybrids on glassy carbon electrode for amperometric detection of NADH and L-cysteine. Journal of Electroanalytical Chemistry, 2019, 848, 113322.	3.8	13
32	Single-walled carbon nanotube/sulfanyl porphyrazine hybrids deposited on glassy carbon electrode for sensitive determination of nitrites. Dyes and Pigments, 2019, 171, 107660.	3.7	12
33	Magnesium porphyrazine with peripheral methyl (3,5-dibromophenylmethyl)amino groups – synthesis and optical properties. Heterocyclic Communications, 2019, 25, 1-7.	1.2	3
34	Photodynamic inactivation of Enterococcus faecalis by conjugates of zinc(II) phthalocyanines with thymol and carvacrol loaded into lipid vesicles. Inorganica Chimica Acta, 2019, 489, 180-190.	2.4	28
35	Optical properties of a series of pyrrolyl-substituted porphyrazines and their photoinactivation potential against Enterococcus faecalis after incorporation into liposomes. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368, 104-109.	3.9	23
36	X-ray and NMR structural studies of the series of porphyrazines with peripheral pyrrolyl groups. Inorganica Chimica Acta, 2019, 484, 368-374.	2.4	3

#	Article	IF	Citations
37	The chitosan – Porphyrazine hybrid materials and their photochemical properties. Journal of Photochemistry and Photobiology B: Biology, 2018, 181, 1-13.	3.8	18
38	Photophysical properties and photocytotoxicity of free and liposome-entrapped diazepinoporphyrazines on LNCaP cells under normoxic and hypoxic conditions. European Journal of Medicinal Chemistry, 2018, 150, 64-73.	5 . 5	21
39	In vitro photodynamic activity of lipid vesicles with zinc phthalocyanine derivative against Enterococcus faecalis. Journal of Photochemistry and Photobiology B: Biology, 2018, 183, 111-118.	3.8	26
40	Physicochemical properties of liposome-incorporated 2-(morpholin-4-yl)ethoxy phthalocyanines and their photodynamic activity against oral cancer cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 445-457.	3.9	21
41	Photodynamic therapy of cancer with liposomal photosensitizers. Therapeutic Delivery, 2018, 9, 823-832.	2.2	34
42	Photodynamic inactivation of Enterococcus faecalis by non-peripherally substituted magnesium phthalocyanines entrapped in lipid vesicles. Journal of Photochemistry and Photobiology B: Biology, 2018, 188, 100-106.	3.8	25
43	Tetrapyrazinoporphyrazine with eight peripheral adamantanylsulfanyl units – Synthesis and physicochemical study. Synthetic Metals, 2018, 244, 66-72.	3.9	1
44	First example of a diazepinoporphyrazine with dendrimeric substituents. Tetrahedron Letters, 2017, 58, 758-761.	1.4	11
45	Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N -methyl morpholiniumethoxy substituents in non-peripheral positions. Journal of Inorganic Biochemistry, 2017, 172, 67-79.	3. 5	60
46	Synthesis and singlet oxygen generation of pyrazinoporphyrazines containing dendrimeric aryl substituents. New Journal of Chemistry, 2017, 41, 3586-3594.	2.8	10
47	Multiwalled carbon nanotube/sulfanyl porphyrazine hybrids deposited on glassy carbon electrode â€" effect of nitro peripheral groups on electrochemical properties. Journal of Porphyrins and Phthalocyanines, 2017, 21, 295-301.	0.8	13
48	Alkylation of 9â€substituted guanine derivatives with α,ωâ€dihaloalkanes. Heteroatom Chemistry, 2017, 28, .	0.7	2
49	Unusual cis-diprotonated forms and fluorescent aggregates of non-peripherally alkoxy-substituted metallophthalocyanines. Physical Chemistry Chemical Physics, 2017, 19, 21390-21400.	2.8	14
50	Sulfanyl porphyrazines: Molecular barrel-like self-assembly in crystals, optical properties and inÂvitro photodynamic activity towards cancer cells. Dyes and Pigments, 2017, 136, 898-908.	3.7	27
51	An enhanced electrochemical nanohybrid sensing platform consisting of reduced graphene oxide and sulfanyl metalloporphyrazines for sensitive determination of hydrogen peroxide and I -cysteine. Dyes and Pigments, 2017, 138, 190-203.	3.7	28
52	Nurses and Pharmacists in Interdisciplinary Team of Health Care Providers in Photodynamic Therapy. , 2017, , .		4
53	Dendrimeric Sulfanyl Porphyrazines: Synthesis, Physicoâ€Chemical Characterization, and Biological Activity for Potential Applications in Photodynamic Therapy. ChemPlusChem, 2016, 81, 460-470.	2.8	34
54	Magnesium(<scp>ii</scp>) 1-(1-adamantylsulfanyl)phthalocyanine – synthesis, photochemical and electrochemical properties. New Journal of Chemistry, 2016, 40, 9774-9780.	2.8	7

#	Article	IF	CITATIONS
55	Improved electrocatalytic response toward hydrogen peroxide reduction of sulfanyl porphyrazine/multiwalled carbon nanotube hybrids deposited on glassy carbon electrodes. Dyes and Pigments, 2016, 134, 569-579.	3.7	21
56	Glycyrrhetinic acid and its derivatives in infectious diseases. Current Issues in Pharmacy and Medical Sciences, 2016, 29, 118-123.	0.4	20
57	Phthalocyanines with bulky substituents at non-peripheral positions – Synthesis and physico-chemical properties. Dyes and Pigments, 2016, 127, 110-115.	3.7	28
58	Synthesis, characterization and photophysical properties of novel 5,7-disubstituted-1,4-diazepine-2,3-dicarbonitriles. Journal of Molecular Structure, 2016, 1110, 208-214.	3.6	8
59	Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions. Journal of Inorganic Biochemistry, 2016, 155, 76-81.	3.5	36
60	Porphyrazine with bulky 2-(1-adamantyl)-5-phenylpyrrol-1-yl periphery tuning its spectral and electrochemical properties. Polyhedron, 2015, 98, 217-223.	2.2	18
61	Phthalocyanine Derivatives Possessing 2-(Morpholin-4-yl)ethoxy Groups As Potential Agents for Photodynamic Therapy. Journal of Medicinal Chemistry, 2015, 58, 2240-2255.	6.4	72
62	Electrochemical properties of metallated porphyrazines possessing isophthaloxybutylsulfanyl substituents: Application in the electrocatalytic oxidation of hydrazine. Electrochimica Acta, 2015, 168, 216-224.	5.2	20
63	Porphyrazines with peripheral isophthaloxyalkylsulfanyl substituents and their optical properties. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 307-308, 54-67.	3.9	27
64	Functionality stored in the structures of cyclodextrin–porphyrinoid systems. Coordination Chemistry Reviews, 2015, 300, 101-120.	18.8	54
65	The Suzuki cross-coupling reaction for the synthesis of porphyrazine possessing bulky 2,5-(biphenyl-4-yl)pyrrol-1-yl substituents in the periphery. Polyhedron, 2015, 102, 462-468.	2.2	9
66	Photophysical properties and photochemistry of a sulfanyl porphyrazine bearing isophthaloxybutyl substituents. Dyes and Pigments, 2015, 113, 702-708.	3.7	21
67	Influence of bulky pyrrolyl substitent on the physicochemical properties of porphyrazines. Dyes and Pigments, 2015, 112, 138-144.	3.7	13
68	Photosensitizers Mediated Photodynamic Inactivation Against Virus Particles. Mini-Reviews in Medicinal Chemistry, 2015, 15, 503-521.	2.4	67
69	Diazepinoporphyrazines Containing Peripheral Styryl Substituents and Their Promising Nanomolar Photodynamic Activity against Oral Cancer Cells in Liposomal Formulations. ChemMedChem, 2014, 9, 1775-1782.	3.2	38
70	Phthalocyanines functionalized with 2-methyl-5-nitro-1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity. Journal of Inorganic Biochemistry, 2013, 127, 62-72.	3.5	42
71	Synthesis, characterization, photochemical properties and cytotoxicity of the novel porphyrazine functionalized with nitroimidazolylbutylsulfanyl groups. Inorganic Chemistry Communication, 2013, 29, 97-100.	3.9	17
72	Synthesis and photochemical properties of unsymmetrical phthalocyanine bearing two 1-adamantylsulfanyl groups at adjacent peripheral positions. Inorganic Chemistry Communication, 2013, 27, 56-59.	3.9	16

#	Article	IF	Citations
73	Functional singlet oxygen generators based on porphyrazines with peripheral 2,5-dimethylpyrrol-1-yl and dimethylamino groups. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 269, 9-16.	3.9	48
74	Current status of liposomal porphyrinoid photosensitizers. Drug Discovery Today, 2013, 18, 776-784.	6.4	88
75	Synthesis, spectroscopic and photophysical properties of novel styryldiazepinoporphyrazine. Inorganic Chemistry Communication, 2012, 20, 13-17.	3.9	15
76	Femtosecond studies of the excited-state dynamics of ester-alkyloxy substituted zinc phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 232, 44-49.	3.9	8
77	Synthesis, characteristics and photochemical studies of novel porphyrazines possessing peripheral 2,5-dimethylpyrrol-1-yl and dimethylamino groups. Tetrahedron Letters, 2012, 53, 2040-2044.	1.4	23
78	Synthesis, physical–chemical properties and in vitro photodynamic activity against oral cancer cells of novel porphyrazines possessing fluoroalkylthio and dietherthio substituents. Journal of Fluorine Chemistry, 2012, 135, 265-271.	1.7	35
79	Potential Aluminium(III)- and Gallium(III)-selective Optical Sensors Based on Porphyrazines. Analytical Sciences, 2011, 27, 511-515.	1.6	17
80	Fluorinated porphyrinoids and their biomedical applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011, 12, 304-321.	11.6	104
81	Experimental and computational study on the reactivity of 2,3-bis[(3-pyridylmethyl)amino]-2(Z)-butene-1,4-dinitrile, a key intermediate for the synthesis of tribenzoporphyrazine bearing peripheral methyl(3-pyridylmethyl)amino substituents. Monatshefte Für Chemie. 2011. 142. 599-608.	1.8	10
82	Synthesis and photochemical characteristics of novel tribenzoporphyrazines possessing peripherally annulated tetrahydrodiazepine and diazepine rings. Polyhedron, 2011, 30, 1004-1011.	2.2	15
83	Photophysical properties and photocytotoxicity of novel phthalocyanines – potentially useful for their application in photodynamic therapy. Polyhedron, 2011, 30, 1538-1546.	2.2	35
84	Serendipitous synthesis of trimetallic porphyrazine triads. Tetrahedron Letters, 2009, 50, 5178-5181.	1.4	2
85	Synthesis, characterization and spectroscopic properties of novel periphery – functionalized unsymmetrical porphyrazines containing mixed dithienylpyrrolyl and dimethylamino groups. Polyhedron, 2009, 28, 2579-2584.	2.2	11
86	Photochemical and spectral characterization of peripherally modified porphyrazines. Polyhedron, 2009, 28, 3839-3843.	2.2	28
87	Synthesis and characterization of periphery-functionalized porphyrazines containing mixed pyrrolyl and pyridylmethylamino groups. Journal of Porphyrins and Phthalocyanines, 2009, 13, 223-234.	0.8	13
88	Photodynamic Therapy in Dentistry. Journal of Dental Research, 2007, 86, 694-707.	5.2	680
89	Porphyrazines as Molecular Scaffolds:Â Flexible Syntheses of Novel Multimetallic Complexes. Inorganic Chemistry, 2006, 45, 3686-3694.	4.0	27
90	Porphyrazines Peripherally Functionalized with Hybrid Ligands as Molecular Scaffolds for Bimetallic Metal-lon Coordination. Inorganic Chemistry, 2006, 45, 3983-3989.	4.0	22

#	Article	IF	Citations
91	SYNTHESIS AND FLUORESCENT PROPERTIES OF THE TRICYCLIC ANALOGUES OF ACYCLOVIR LINKED WITH NITROGEN HETBROCYCLIC UNITS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 571-575.	1.1	3
92	A novel series of strongly fluorescent tricyclic analogues of acyclovir resulting from spontaneous oxidation of some of their 7-[4-(benzhydryl)phenyl]-6-(4-R-phenyl) derivatives., 2005,,.		0
93	Spectral and photophysical properties of some imidazo[1,2-a]purine derivatives related to acyclovir. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 171-180.	3.9	8
94	Synthesis and Fluorescent Properties of 6-(4-Biphenylyl)-3,9-dihydro-9-oxo-5H-imidazo[1,2-A]purine Analogues of Acyclovir and Ganciclovir. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 911-914.	1.1	13
95	Synthesis and Biological Activity of Strongly Fluorescent Tricyclic Analogues of Acyclovir and Ganciclovir. Journal of Medicinal Chemistry, 2002, 45, 5052-5057.	6.4	29
96	Pronounced cytostatic activity and bystander effect of a novel series of fluorescent tricyclic acyclovir and ganciclovir derivatives in herpes simplex virus thymidine kinase gene-transduced tumor cell lines. Gene Therapy, 2002, 9, 1173-1182.	4.5	23
97	Fluorescent Tricyclic Analogues of Acyclovir and Ganciclovir. A Structureâ-'Antiviral Activity Study. Journal of Medicinal Chemistry, 2001, 44, 4284-4287.	6.4	46
98	Unusual Tritylation Reactions of Tricyclic Analogues of Acyclovir and an Attempt to Elucidate Their Mechanism. Helvetica Chimica Acta, 2000, 83, 373-379.	1.6	2
99	Substituent â€" Directed Aralkylation and Alkylation Reactions of the Tricyclic Analogues of Acyclovir and Guanosine. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1911-1929.	1.1	9
100	Oxidative cleavage of the tricyclic derivatives of 9-substituted guanines. Collection of Czechoslovak Chemical Communications, 1996, 61, 38-41.	1.0	2
101	Dendrimer Structure Diversity and Tailorability as a Way to Fight Infectious Diseases. , 0, , .		6
102	Physicochemical Properties and Catalytic Applications of Iron Porphyrazines and Phthalocyanines. , 0,		2
103	Photodynamic antimicrobial activity of magnesium(II) porphyrazine with bulky peripheral sulfanyl substituents. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-6.	1.6	1