Silvia Fossati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3375886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beta-Amyloid Instigates Dysfunction of Mitochondria in Cardiac Cells. Cells, 2022, 11, 373.	4.1	15
2	Comparative analysis of mitochondrial CRC in permeabilized cells and isolated cell mitochondria. FASEB Journal, 2022, 36, .	0.5	0
3	CRF serum levels differentiate PTSD from healthy controls and TBI in military veterans. Psychiatric Research and Clinical Practice, 2021, 3, 153-162.	2.4	7
4	Reader Response: Blood Biomarkers of Traumatic Brain Injury and Cognitive Impairment in Older Veterans. Neurology, 2021, 97, 101.1-101.	1.1	0
5	Dissecting the Crosstalk between Endothelial Mitochondrial Damage, Vascular Inflammation, and Neurodegeneration in Cerebral Amyloid Angiopathy and Alzheimer's Disease. Cells, 2021, 10, 2903.	4.1	36
6	Carbonic Anhydrases as Potential Targets Against Neurovascular Unit Dysfunction in Alzheimer's Disease and Stroke. Frontiers in Aging Neuroscience, 2021, 13, 772278.	3.4	27
7	Analysis of Mitochondrial Calcium Retention Capacity in Cultured Cells: Permeabilized Cells Versus Isolated Mitochondria. Frontiers in Physiology, 2021, 12, 773839.	2.8	7
8	Clearance of interstitial fluid (ISF) and CSF (CLIC) group—part of Vascular Professional Interest Area (PIA). Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12053.	2.4	53
9	Vascular dysfunction in CAA in the presence of cardiovascular risk factors: The role of the mitochondria and therapeutic approaches. Alzheimer's and Dementia, 2020, 16, e043944.	0.8	0
10	Carbonic anhydrase inhibition ameliorates Aβâ€induced neurovascular dysfunction in vivo. Alzheimer's and Dementia, 2020, 16, e044221.	0.8	1
11	Alzheimer's amyloid β heterogeneous species differentially affect brain endothelial cell viability, bloodâ€brain barrier integrity, and angiogenesis. Aging Cell, 2020, 19, e13258.	6.7	39
12	Editorial: Identification of Multiple Targets in the Fight Against Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 169.	3.4	3
13	Effect of Combat Exposure and Posttraumatic Stress Disorder on Telomere Length and Amygdala Volume. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 678-687.	1.5	10
14	Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Frontiers in Neurology, 2020, 11, 573324.	2.4	24
15	Plasma tau predicts cerebral vulnerability in aging. Aging, 2020, 12, 21004-21022.	3.1	5
16	Endothelial Mitochondrial Dysfunction in Cerebral Amyloid Angiopathy and Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 72, 1019-1039.	2.6	72
17	Plasma tau complements CSF tau and Pâ€ŧau in the diagnosis of Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 483-492.	2.4	86
18	Poster Viewing Sessions PB01-B01 to PB03-V09. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 167-523.	4.3	7

SILVIA FOSSATI

#	Article	IF	CITATIONS
19	A New Kid on the Block? Carbonic Anhydrases as Possible New Targets in Alzheimer's Disease. International Journal of Molecular Sciences, 2019, 20, 4724.	4.1	61
20	White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 107-117.	3.7	250
21	Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder. Science Translational Medicine, 2019, 11, .	12.4	65
22	T16. Discovery of Novel Blood Biomarkers for PTSD and TBI. Biological Psychiatry, 2018, 83, S134-S135.	1.3	0
23	Traumatic Brain Injury and Alzheimer's Disease: The Cerebrovascular Link. EBioMedicine, 2018, 28, 21-30.	6.1	250
24	P3â€464: CARBONIC ANHYDRASE INHIBITORS AMELIORATE NEUROVASCULAR DYSFUNCTION IN A MOUSE MODEL OF CEREBRAL AMYLOID ANGIOPATHY. Alzheimer's and Dementia, 2018, 14, P1296.	0.8	12
25	Carbonic anhydrase inhibition selectively prevents amyloid Î ² neurovascular mitochondrial toxicity. Aging Cell, 2018, 17, e12787.	6.7	64
26	The nonlinear relationship between cerebrospinal fluid Aβ42 and tau in preclinical Alzheimer's disease. PLoS ONE, 2018, 13, e0191240.	2.5	41
27	Cerebrospinal Fluid Clearance in Alzheimer Disease Measured with Dynamic PET. Journal of Nuclear Medicine, 2017, 58, 1471-1476.	5.0	161
28	[P4–133]: DIFFERENTIAL VALUE OF PLASMA TAU AS A BIOMARKER FOR ALZHEIMER'S DISEASE AND CHRONIC TRAUMATIC BRAIN INJURY. Alzheimer's and Dementia, 2017, 13, P1307.	0.8	3
29	P2â€099: Carbonic Anhydrase is a Crucial Target for Prevention of Mitochondrial Pathology in Alzheimer's Models. Alzheimer's and Dementia, 2016, 12, P650.	0.8	0
30	The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain. Neurobiology of Disease, 2016, 86, 29-40.	4.4	73
31	Greater Specificity for Cerebrospinal Fluid P-tau231 over P-tau181 in the Differentiation of Healthy Controls from Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 49, 93-100.	2.6	35
32	P4-209: Methazolamide protects neuronal and glial cells from amyloid toxicity in vitro and in vivo via mitochondria-mediated mechanisms. , 2015, 11, P860-P861.		0
33	Mitochondrial dysfunction induced by a post-translationally modified amyloid linked to a familial mutation in an alternative model of neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2457-2467.	3.8	14
34	Amyloidosis Associated with Cerebral Amyloid Angiopathy: Cell Signaling Pathways Elicited in Cerebral Endothelial Cells. Journal of Alzheimer's Disease, 2014, 42, S167-S176.	2.6	49
35	O2-12-01: MITOCHONDRIA AND DEATH RECEPTORS: KEY TARGETS FOR AMYLOID TOXICITY IN THE CEREBRAL VASCULATURE. , 2014, 10, P191-P191.		0
36	Differential contribution of isoaspartate post-translational modifications to the fibrillization and toxic properties of amyloid Î ² and the Asn23 Iowa mutation. Biochemical Journal, 2013, 456, 347-360.	3.7	39

Silvia Fossati

#	Article	IF	CITATIONS
37	TRAIL death receptors DR4 and DR5 mediate cerebral microvascular endothelial cell apoptosis induced by oligomeric Alzheimer's Aβ. Cell Death and Disease, 2012, 3, e321-e321.	6.3	66
38	Insights into Caspase-Mediated Apoptotic Pathways Induced by Amyloid-β in Cerebral Microvascular Endothelial Cells. Neurodegenerative Diseases, 2012, 10, 324-328.	1.4	41
39	Amyloid beta oligomers trigger death receptorsâ€mediated apoptosis in cerebral endothelial cells. FASEB Journal, 2012, 26, 752.8.	0.5	0
40	Differential activation of mitochondrial apoptotic pathways by vasculotropic amyloidâ€Î² variants in cells composing the cerebral vessel walls. FASEB Journal, 2010, 24, 229-241.	0.5	74
41	Matrix Metalloproteinase 2 (MMP-2) Degrades Soluble Vasculotropic Amyloid-β E22Q and L34V Mutants, Delaying Their Toxicity for Human Brain Microvascular Endothelial Cells. Journal of Biological Chemistry, 2010, 285, 27144-27158.	3.4	43
42	Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiology of Disease, 2009, 36, 269-279.	4.4	123
43	Dutch and arctic mutant peptides of β amyloid1–40 differentially affect the FGF-2 pathway in brain endothelium. Experimental Cell Research, 2009, 315, 385-395.	2.6	39
44	Tauroursodeoxycholic acid prevents E22Q Alzheimer's Aβ toxicity in human cerebral endothelial cells. Cellular and Molecular Life Sciences, 2009, 66, 1094-1104.	5.4	57
45	A Key Role for Poly(ADP-Ribose) Polymerase-1 Activity during Human Dendritic Cell Maturation. Journal of Immunology, 2007, 179, 305-312.	0.8	57
46	Relevance of Highâ€Mobility Group Protein Box 1 to Neurodegeneration. International Review of Neurobiology, 2007, 82, 137-148.	2.0	16
47	Carboxymethyl β-glucan Binds to Corneal Epithelial Cells and Increases Cell Adhesion to Laminin and Resistance to Oxidative Stress. Cornea, 2007, 26, 73-79.	1.7	4
48	Neither energy collapse nor transcription underlie in vitro neurotoxicity of poly(ADP-ribose) polymerase hyper-activation. Neurochemistry International, 2007, 50, 203-210.	3.8	28
49	Kynurenic acid actions in brain and periphery. International Congress Series, 2007, 1304, 305-313.	0.2	22
50	High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration <i>in vitro</i> and <i>in vivo</i> . Journal of Neurochemistry, 2007, 103, 590-603.	3.9	204
51	Poly(ADP-ribosyl)ation regulates heat shock factor-1 activity and the heat shock response in murine fibroblasts. Biochemistry and Cell Biology, 2006, 84, 703-712.	2.0	24
52	Poly(ADP-ribose) Accumulation and Enhancement of Postischemic Brain Damage in 110-kDa Poly(ADP-ribose) Glycohydrolase Null Mice. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 684-695.	4.3	65
53	Inhibition of Poly(ADP-Ribose) Glycohydrolase by Gallotannin Selectively Up-Regulates Expression of Proinflammatory Genes. Molecular Pharmacology, 2004, 66, 890-898.	2.3	49