
## Hayato Fujimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3375531/publications.pdf Version: 2024-02-01



Ηλγλτο Ειμιλιότο

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Phosphine-Catalyzed Intermolecular Acylfluorination of Alkynes via a P(V) Intermediate. Journal of the American Chemical Society, 2020, 142, 17323-17328.                                                                                                     | 13.7 | 54        |
| 2  | Nickel-Catalyzed Decarboxylation of Aryl Carbamates for Converting Phenols into Aromatic Amines.<br>Journal of the American Chemical Society, 2019, 141, 7261-7265.                                                                                           | 13.7 | 41        |
| 3  | Aryne-Induced S <sub>N</sub> Ar/Dearylation Strategy for the Synthesis of Fluorinated<br>Dibenzophospholes from Triarylphosphines via a P(V) Intermediate. Organic Letters, 2020, 22, 2293-2297.                                                              | 4.6  | 31        |
| 4  | Cyclization of Bisphosphines to Phosphacycles via the Cleavage of Two Carbon–Phosphorus Bonds by<br>Nickel Catalysis. Organic Letters, 2019, 21, 4177-4181.                                                                                                   | 4.6  | 25        |
| 5  | Three-Component Coupling of Acyl Fluorides, Silyl Enol Ethers, and Alkynes by P(III)/P(V) Catalysis.<br>Journal of the American Chemical Society, 2021, 143, 18394-18399.                                                                                     | 13.7 | 25        |
| 6  | N-Heterocyclic Carbene-Catalyzed Truce–Smiles Rearrangement of <i>N</i> -Arylacrylamides via the<br>Cleavage of Unactivated C(aryl)–N Bonds. Organic Letters, 2021, 23, 1572-1576.                                                                            | 4.6  | 23        |
| 7  | Non-Stabilized Vinyl Anion Equivalents from Styrenes by N-Heterocyclic Carbene Catalysis and Its Use<br>in Catalytic Nucleophilic Aromatic Substitution. Journal of the American Chemical Society, 2022, 144,<br>6714-6718.                                   | 13.7 | 17        |
| 8  | Iron(III) nitrate-induced aerobic and catalytic oxidative cleavage of olefins. Tetrahedron Letters, 2018, 59, 2657-2660.                                                                                                                                      | 1.4  | 12        |
| 9  | Overlooked Factors Required for Electrolyte Solvents in Li–O <sub>2</sub> Batteries: Capabilities of Quenching <sup>1O<sub>2</sub> and Forming Highlyâ€Decomposable Li<sub>2</sub>O<sub>2</sub>. Angewandte Chemie - International Edition, 2022, 61, .</sup> | 13.8 | 12        |
| 10 | The Effect of the Leaving Group in N-Heterocyclic Carbene-Catalyzed Nucleophilic Aromatic Substitution Reactions. Bulletin of the Chemical Society of Japan, 2020, 93, 1424-1429.                                                                             | 3.2  | 11        |
| 11 | Synthesis and Isomerization Behavior of a Macrocycle with Four Photoresponsive Moieties. Organic Letters, 2018, 20, 2055-2058.                                                                                                                                | 4.6  | 4         |
| 12 | Synthetic Applications of C–O and C–E Bond Activation Reactions. , 2022, , 347-420.                                                                                                                                                                           |      | 4         |
| 13 | Overlooked Factors Required for Electrolyte Solvents in Li–O <sub>2</sub> Batteries: Capabilities of Quenching <sup>1</sup> O <sub>2</sub> and Forming Highlyâ€Decomposable                                                                                   | 2.0  | 1         |