List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3375367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward a Universal "Adhesive Nanosheet―for the Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of Graphene Oxide. Journal of the American Chemical Society, 2010, 132, 7279-7281.	13.7	794
2	Different sized luminescent gold nanoparticles. Nanoscale, 2012, 4, 4073.	5.6	554
3	Passive Tumor Targeting of Renal-Clearable Luminescent Gold Nanoparticles: Long Tumor Retention and Fast Normal Tissue Clearance. Journal of the American Chemical Society, 2013, 135, 4978-4981.	13.7	534
4	Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Materials Today, 2013, 16, 477-486.	14.2	276
5	PEGylation and Zwitterionization: Pros and Cons in the Renal Clearance and Tumor Targeting of Nearâ€IRâ€Emitting Gold Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 12572-12576.	13.8	237
6	Nearâ€Infrared Emitting Radioactive Gold Nanoparticles with Molecular Pharmacokinetics. Angewandte Chemie - International Edition, 2012, 51, 10118-10122.	13.8	184
7	Luminescent Gold Nanoparticles with pH-Dependent Membrane Adsorption. Journal of the American Chemical Society, 2011, 133, 11014-11017.	13.7	179
8	Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructuresviaself-assembly. Journal of Materials Chemistry, 2010, 20, 900-906.	6.7	167
9	pH-Guided Self-Assembly of Copper Nanoclusters with Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2017, 9, 3902-3910.	8.0	138
10	Luminescent Gold Nanoparticles with Sizeâ€Independent Emission. Angewandte Chemie - International Edition, 2016, 55, 8894-8898.	13.8	126
11	Highâ€contrast Noninvasive Imaging of Kidney Clearance Kinetics Enabled by Renal Clearable Nanofluorophores. Angewandte Chemie - International Edition, 2015, 54, 15434-15438.	13.8	83
12	An aptamer based resonance light scattering assay of prostate specific antigen. Biosensors and Bioelectronics, 2012, 36, 35-40.	10.1	81
13	Renal Clearance and Degradation of Glutathione-Coated Copper Nanoparticles. Bioconjugate Chemistry, 2015, 26, 511-519.	3.6	78
14	A simple and sensitive assay of nucleic acids based on the enhanced resonance light scattering of zwitterionics. Analytica Chimica Acta, 2005, 550, 204-209.	5.4	70
15	Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin. Journal of Nanoparticle Research, 2013, 15, 1930.	1.9	61
16	A novel histidine assay using tetraphenylporphyrin manganese (III) chloride as a molecular recognition probe by resonance light scattering technique. Analytica Chimica Acta, 2006, 570, 109-115.	5.4	54
17	Amphiphilic Block Copolymer-Guided <i>in Situ</i> Fabrication of Stable and Highly Controlled Luminescent Copper Nanoassemblies. Journal of the American Chemical Society, 2019, 141, 2852-2856.	13.7	51
18	Glutathione-Coated Luminescent Gold Nanoparticles: A Surface Ligand for Minimizing Serum Protein Adsorption. ACS Applied Materials & Interfaces, 2014, 6, 11829-11833.	8.0	47

#	Article	IF	CITATIONS
19	Tailor-made Au@Ag core–shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity. Nanotechnology, 2013, 24, 205102.	2.6	44
20	Rapid and sensitive determination of proteins by enhanced resonance light scattering spectroscopy of sodium lauroyl glutamate. Talanta, 2007, 71, 1246-1251.	5.5	43
21	Luminescent gold nanoparticles: A new class of nanoprobes for biomedical imaging. Experimental Biology and Medicine, 2013, 238, 1199-1209.	2.4	41
22	Surface Regulation Towards Stimuliâ€Responsive Luminescence of Ultrasmall Thiolated Gold Nanoparticles for Ratiometric Imaging. Advanced Functional Materials, 2019, 29, 1806945.	14.9	38
23	Self-Assembly of Luminescent Gold Nanoparticles with Sensitive pH-Stimulated Structure Transformation and Emission Response toward Lysosome Escape and Intracellular Imaging. Analytical Chemistry, 2019, 91, 8237-8243.	6.5	37
24	Fluorescent pH-Sensing Probe Based on Biorefinery Wood Lignosulfonate and Its Application in Human Cancer Cell Bioimaging. Journal of Agricultural and Food Chemistry, 2016, 64, 9592-9600.	5.2	36
25	Bioapplications of renal-clearable luminescent metal nanoparticles. Biomaterials Science, 2017, 5, 1393-1406.	5.4	36
26	Transformation from gold nanoclusters to plasmonic nanoparticles: A general strategy towards selective detection of organophosphorothioate pesticides. Biosensors and Bioelectronics, 2018, 99, 274-280.	10.1	36
27	Strict DNA Valence Control in Ultrasmall Thiolate-Protected Near-Infrared-Emitting Gold Nanoparticles. Journal of the American Chemical Society, 2020, 142, 14023-14027.	13.7	34
28	Enhanced Ultrasound Contrast of Renalâ€Clearable Luminescent Gold Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 11713-11717.	13.8	32
29	One‣tep Interfacial Synthesis and Assembly of Ultrathin Luminescent AuNPs/Silica Membranes. Advanced Materials, 2012, 24, 3218-3222.	21.0	31
30	Luminescent Gold Nanoparticles with Sizeâ€Independent Emission. Angewandte Chemie, 2016, 128, 9040-9044.	2.0	31
31	Precisely Regulated Luminescent Gold Nanoparticles for Identification of Cancer Metastases. ACS Nano, 2020, 14, 13975-13985.	14.6	29
32	Concentrationâ€Dependent Subcellular Distribution of Ultrasmall Nearâ€Infraredâ€Emitting Gold Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 5739-5743.	13.8	29
33	Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. Advanced Science, 2022, 9, e2103971.	11.2	29
34	Effect of Hydrophobicity on Nano-Bio Interactions of Zwitterionic Luminescent Gold Nanoparticles at the Cellular Level. Bioconjugate Chemistry, 2018, 29, 1841-1846.	3.6	26
35	Coordinatively Self-Assembled Luminescent Gold Nanoparticles: Fluorescence Turn-On System for High-Efficiency Passive Tumor Imaging. ACS Applied Materials & Interfaces, 2017, 9, 5118-5127.	8.0	25
36	Surface Coverage-Regulated Cellular Interaction of Ultrasmall Luminescent Gold Nanoparticles. ACS Nano, 2019, 13, 1893-1899.	14.6	22

#	Article	IF	CITATIONS
37	Bidirectional Regulation of Singlet Oxygen Generation from Luminescent Gold Nanoparticles through Surface Manipulation. Small, 2020, 16, e2000011.	10.0	19
38	Label-free detection of target DNA sequence and single-base mismatch in hepatitis C virus corresponding to oligonucleotide by resonance light scattering technique. RSC Advances, 2012, 2, 2562.	3.6	18
39	Reactivity Toward Ag ⁺ : A General Strategy to Generate a New Emissive Center from NIR-Emitting Gold Nanoparticles. Journal of Physical Chemistry Letters, 2018, 9, 557-562.	4.6	18
40	Determination of Nucleic Acids Based on their Resonance Light Scattering Enhancement Effect on Metalloporphyrin Derivatives. Mikrochimica Acta, 2005, 150, 35-42.	5.0	16
41	Use of Sodium Lauroyl Sarcosinate in a High-Sensitivity Protein Assay by Resonance Light Scattering Technique. Journal of Biomolecular Screening, 2006, 11, 400-406.	2.6	16
42	One-step synthesis and self-assembly of a luminescent sponge-like network of gold nanoparticles with high absorption capacity. Journal of Materials Chemistry C, 2017, 5, 6917-6922.	5.5	16
43	pHâ€Regulated Surface Plasmon Absorption from Ultrasmall Luminescent Gold Nanoparticles. Advanced Optical Materials, 2018, 6, 1701324.	7.3	16
44	Facile <i>in situ</i> synthesis of ultrasmall near-infrared-emitting gold glyconanoparticles with enhanced cellular uptake and tumor targeting. Nanoscale, 2019, 11, 16336-16341.	5.6	16
45	In situ self-assembly of near-infrared-emitting gold nanoparticles into body-clearable 1D nanostructures with rapid lysosome escape and fast cellular excretion. Nano Research, 2021, 14, 1087-1094.	10.4	16
46	Highâ€sensitivity Determination of Curcumin in Human Urine Using Gemini Zwitterionic Surfactant as a Probe by Resonance Light Scattering Technique. Phytochemical Analysis, 2012, 23, 456-461.	2.4	14
47	In Situ Selfâ€Assembly of Ultrastable Crosslinked Luminescent Gold Nanoparticle and Organic Dye Nanohybrids toward Ultrasensitive and Reversible Ratiometric Thermal Imaging. Advanced Optical Materials, 2019, 7, 1900326.	7.3	14
48	Green and transparent cellulose nanofiber substrate-supported luminescent gold nanoparticles: A stable and sensitive solid-state sensing membrane for Hg(II) detection. Sensors and Actuators B: Chemical, 2020, 319, 128295.	7.8	14
49	Micro-determination of nucleic acids with a simple probe manganese chloride based on the fine enhanced resonance light scattering. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 263-268.	3.9	13
50	An assay of DNA by resonance light scattering technique and its application in screening anticancer drugs. Analytical Methods, 2012, 4, 1546-1551.	2.7	13
51	Weak Anchoring Sites of Thiolateâ€Protected Luminescent Gold Nanoparticles. Small, 2021, 17, e2102481.	10.0	12
52	Detection of Vascular Endothelial Growth Factor Based on Gold Nanoparticles and Immunoreaction Using Resonance Light Scattering. Plasmonics, 2013, 8, 605-611.	3.4	9
53	Development of a sensitive and rapid nucleic acid assay with tetraphenyl porphyrinatoiron chloride by a resonance light scattering technique. Luminescence, 2007, 22, 493-500.	2.9	8
54	A sensitive rutin assay using a simple probe manganese sulfate based on its novel resonance light scattering decrease phenomenon. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 344-349.	3.9	8

#	Article	IF	CITATIONS
55	Coordination-induced decomposition of luminescent gold nanoparticles: sensitive detection of H2O2 and glucose. Analytical and Bioanalytical Chemistry, 2017, 409, 1635-1641.	3.7	8
56	Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 483-487.	3.9	8
57	Concentrationâ€Dependent Subcellular Distribution of Ultrasmall Nearâ€Infraredâ€Emitting Gold Nanoparticles. Angewandte Chemie, 2021, 133, 5803-5807.	2.0	8
58	Functionalized gold nanorods as an immunosensor probe for neuron specific enolase sensing via resonance light scattering. Journal of Materials Chemistry B, 2013, 1, 3031.	5.8	7
59	Surface-Chemistry Effect on Cellular Response of Luminescent Plasmonic Silver Nanoparticles. Bioconjugate Chemistry, 2014, 25, 453-459.	3.6	7
60	Enhanced Ultrasound Contrast of Renal learable Luminescent Gold Nanoparticles. Angewandte Chemie, 2021, 133, 11819-11823.	2.0	6
61	A novel and selective assay for the quantitative analysis of molybdenum(VI) at nanogram level by resonance light scattering quenching technique. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 70, 290-296.	3.9	5
62	Resonance Light Scattering Spectroscopy of .BETACyclodextrin-Sodium Dodecylsulfate-Protein Ternary System and Its Analytical Applications. Analytical Sciences, 2007, 23, 1305-1310.	1.6	4
63	Growth regulation of luminescent gold nanoparticles directed from amphiphilic block copolymers: highly-controlled nanoassemblies toward tailored in-vivo transport. Science China Chemistry, 2021, 64, 157-164.	8.2	4
64	Rapid and Sensitive Determination of Nucleic Acids by Enhanced Resonance Light Scattering Spectroscopy of Tetraphenyl Porphyrin Cobalt(II)Chloride. Instrumentation Science and Technology, 2006, 34, 273-287.	1.8	3
65	A resonance light scattering sensor based on methylene blue–sodium dodecyl benzene sulfonate for ultrasensitive detection of guanine base associated mutations. Analytical and Bioanalytical Chemistry, 2012, 404, 1673-1679.	3.7	3
66	Surface-regulated injection dose response of ultrasmall luminescent gold nanoparticles. Nanoscale, 2022, 14, 8818-8824.	5.6	3
67	Sensitive determination of DNA based on resonance light scattering enhancement of azocarmine G and CTAB. Central South University, 2005, 12, 688-692.	0.5	2
68	Editorial:The Golden Era: Gold Nanomaterials for Bioapplications. Frontiers in Chemistry, 2020, 8, 780.	3.6	2
69	Decomposition of Amino Acids Catalyzed by Plasmonic Gold Nanoparticles. Science of Advanced Materials, 2012, 4, 813-818.	0.7	2
70	A label-free method for studying DNA sequence recognition of mitoxantrone based on resonance light-scattering technique. Journal of Antibiotics, 2012, 65, 517-522.	2.0	1
71	Special Issue of "Bioimaging". Chinese Journal of Chemistry, 2016, 34, 539-539.	4.9	0