Deborah L Galson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3375240/publications.pdf Version: 2024-02-01

DEROPAH L CALSON

#	Article	IF	CITATIONS
1	GFI1-Dependent Repression of SGPP1 Increases Multiple Myeloma Cell Survival. Cancers, 2022, 14, 772.	3.7	5
2	A Novel Mouse Model for SNP in Steroid Receptor Co-Activator-1 Reveals Role in Bone Density and Breast Cancer Metastasis. Endocrinology, 2021, 162, .	2.8	5
3	EZH2 Supports Osteoclast Differentiation and Bone Resorption Via Epigenetic and Cytoplasmic Targets. Journal of Bone and Mineral Research, 2020, 35, 181-195.	2.8	26
4	A Novel Sulforaphane-Regulated Gene Network in Suppression of Breast Cancer–Induced Osteolytic Bone Resorption. Molecular Cancer Therapeutics, 2020, 19, 420-431.	4.1	10
5	Osteoclasts in Skeletal Diseases. , 2020, , 353-370.		Ο
6	Epigeneticâ€Based Mechanisms of Osteoblast Suppression in Multiple Myeloma Bone Disease. JBMR Plus, 2019, 3, e10183.	2.7	19
7	Abstract 5070: Sulforaphane is a novel inhibitor of breast cancer-induced osteolytic bone resorption. , 2019, , .		0
8	Abstract 5070: Sulforaphane is a novel inhibitor of breast cancer-induced osteolytic bone resorption. , 2019, , .		0
9	Growth factor independence 1 expression in myeloma cells enhances their growth, survival, and osteoclastogenesis. Journal of Hematology and Oncology, 2018, 11, 123.	17.0	10
10	Distinct mechanisms regulate IL1B gene transcription in lymphoid CD4 T cells and monocytes. Cytokine, 2018, 111, 373-381.	3.2	25
11	Osteoblast suppression in multiple myeloma bone disease. Journal of Bone Oncology, 2018, 13, 62-70.	2.4	28
12	A combined computational and experimental approach reveals the structure of a C/EBPβ–Spi1 interaction required for IL1B gene transcription. Journal of Biological Chemistry, 2018, 293, 19942-19956.	3.4	5
13	The Role of Semaphorin 4D in Bone Remodeling and Cancer Metastasis. Frontiers in Endocrinology, 2018, 9, 322.	3.5	39
14	XRK3F2 Inhibition of p62-ZZ Domain Signaling Rescues Myeloma-Induced GFI1-Driven Epigenetic Repression of the Runx2 Gene in Pre-osteoblasts to Overcome Differentiation Suppression. Frontiers in Endocrinology, 2018, 9, 344.	3.5	20
15	Epigenetic Targeting of the Myeloma-Bone Microenvironment in 3D. Blood, 2018, 132, 246-246.	1.4	1
16	The Gfi1-SphK1 Axis Regulates the Growth and Survival of Myeloma Cells. Blood, 2018, 132, 5615-5615.	1.4	0
17	TBK1/lkkε Inhibitor Amlx Blocks Multiple Myeloma Cell Growth in Vitro and In Vivo. Blood, 2018, 132, 4504-4504.	1.4	1
18	EZH2 or HDAC1 Inhibition Reverses Multiple Myeloma–Induced Epigenetic Suppression of Osteoblast Differentiation. Molecular Cancer Research, 2017, 15, 405-417.	3.4	57

Deborah L Galson

#	Article	IF	CITATIONS
19	EZH2 Inhibitor CSK126 Exhibits Osteo-Anabolic Properties in MM Bone Disease and Synergizes with Bortezomib to Inhibit MM Cell Viability. Blood, 2016, 128, 3247-3247.	1.4	3
20	p62-ZZ Domain Signaling Inhibition Rescues MM-Induced Epigenetic Repression at the Runx2 promoter and Allows Osteoblast Differentiation of MM Patient Pre-Osteoblasts In Vitro. Blood, 2016, 128, 4410-4410.	1.4	4
21	Developmental Aspects of Pagetic Osteoclasts. , 2016, , 37-53.		Ο
22	Kindlin-2 controls TGF-Î ² signalling and Sox9 expression to regulate chondrogenesis. Nature Communications, 2015, 6, 7531.	12.8	93
23	p62-ZZ Domain Inhibition Prevents MM Cell-Induced Epigenetic Changes at the Runx2 and C/EBPb Promoters. Blood, 2015, 126, 1796-1796.	1.4	0
24	LIM-Domain Protein Ajuba Is a Required Co-Factor for Gfi1-Induced Epigenetic Switch Regulating Runx2 Repression in Multiple Myeloma-Exposed Pre-Osteoblasts. Blood, 2015, 126, 4216-4216.	1.4	0
25	Pathobiology of Paget's Disease of Bone. Journal of Bone Metabolism, 2014, 21, 85.	1.3	98
26	TBK1 Mediates Critical Effects of Measles Virus Nucleocapsid Protein (MVNP) on Pagetic Osteoclast Formation. Journal of Bone and Mineral Research, 2014, 29, 90-102.	2.8	24
27	Increased IL-6 Expression in Osteoclasts Is Necessary But Not Sufficient for the Development of Paget's Disease of Bone. Journal of Bone and Mineral Research, 2014, 29, 1456-1465.	2.8	28
28	Measles virus nucleocapsid protein, a key contributor to Paget's disease, increases IL-6 expression via down-regulation of FoxO3/Sirt1 signaling. Bone, 2013, 53, 269-276.	2.9	18
29	Role of ATF7-TAF12 interactions in the vitamin D response hypersensitivity of osteoclast precursors in Paget's disease. Journal of Bone and Mineral Research, 2013, 28, 1489-1500.	2.8	15
30	ATF4 promotes bone angiogenesis by increasing vegf expression and release in the bone environment. Journal of Bone and Mineral Research, 2013, 28, 1870-1884.	2.8	57
31	Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 1β and Tumor Necrosis Factor α. PLoS ONE, 2013, 8, e70622.	2.5	33
32	Osteoclasts: Potential Target for Blocking Microenvironmental Support of Myeloma. , 2013, , 169-185.		1
33	Increase of Gfi1 Acetylation by HDAC Inhibitors Blocks Gfi1-Mediated Runx2 Repression in Osteoblast Precursors in Multiple Myeloma Bone Disease. Blood, 2013, 122, 753-753.	1.4	2
34	The Pâ€TEFbâ€dependent Gene Coding for ILâ€1β is More Sensitive to Cellular Metabolism than that of the BRD4â€dependent TNFαâ€coding Gene. FASEB Journal, 2013, 27, 769.8.	0.5	0
35	The Transcription Repressor Gfi1 Directly Interacts With and Is Phosphorylated By Aurora A Kinase, Which Abrogates Myeloma-Induced Gfi1 Repression Of The Runx2 Promoter In Pre-Osteoblasts. Blood, 2013, 122, 1844-1844.	1.4	1
36	The Transcription Repressor Gfi1 Directly Interacts With and Is Phosphorylated By Aurora A Kinase, Which Abrogates Myeloma-Induced Gfi1 Repression Of The Runx2 Promoter In Pre-Osteoblasts. Blood, 2013, 122, 1184-1184.	1.4	0

DEBORAH L GALSON

#	Article	IF	CITATIONS
37	Annexin II interactions with the annexin II receptor enhance multiple myeloma cell adhesion and growth in the bone marrow microenvironment. Blood, 2012, 119, 1888-1896.	1.4	63
38	Lactational changes in bone metabolism in calcitonin receptor-deleted mice. Bone, 2012, 50, S105.	2.9	0
39	Mechanisms of multiple myeloma bone disease. BoneKEy Reports, 2012, 1, 135.	2.7	43
40	Origins of Osteoclasts. , 2011, , 7-41.		5
41	Contributions of the Measles Virus Nucleocapsid Gene and the SQSTM1/p62P392L Mutation to Paget's Disease. Cell Metabolism, 2011, 13, 23-34.	16.2	104
42	IMiD immunomodulatory compounds block C/EBPβ translation through eIF4E down-regulation resulting in inhibition of MM. Blood, 2011, 117, 5157-5165.	1.4	89
43	Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood, 2011, 118, 6871-6880.	1.4	86
44	Resveratrol triggers the pro-apoptotic endoplasmic reticulum stress response and represses pro-survival XBP1 signaling in human multiple myeloma cells. Experimental Hematology, 2011, 39, 999-1006.	0.4	58
45	ADAM8 enhances osteoclast precursor fusion and osteoclast formation in vitro and in vivo. Journal of Bone and Mineral Research, 2011, 26, 169-181.	2.8	37
46	Annexin II Interactions with the Annexin II Receptor Enhance Multiple Myeloma Cell Adhesion and Growth in the Bone Marrow Microenvironment,. Blood, 2011, 118, 3942-3942.	1.4	7
47	TRAF6 is autoinhibited by an intramolecular interaction which is counteracted by <i>trans</i> â€ubiquitination. Journal of Cellular Biochemistry, 2010, 110, 763-771.	2.6	22
48	Activating transcription factor 4 regulates osteoclast differentiation in mice. Journal of Clinical Investigation, 2010, 120, 2755-2766.	8.2	80
49	Annexin II Interactions with the Annexin II Receptor Enhance Multiple Myeloma Cell Adhesion and Growth In the Bone Marrow Microenvironment. Blood, 2010, 116, 130-130.	1.4	3
50	Molecular Mechanisms of TRAF6 Ubiquitination and Activation. FASEB Journal, 2010, 24, 843.3.	0.5	0
51	Oncostatin M–induced CCL2 transcription in osteoblastic cells is mediated by multiple levels of STATâ€1 and STATâ€3 signaling: An implication for the pathogenesis of arthritis. Arthritis and Rheumatism, 2009, 60, 1451-1462.	6.7	38
52	C/EBPβ regulates transcription factors critical for proliferation and survival of multiple myeloma cells. Blood, 2009, 114, 3890-3898.	1.4	73
53	Multiple Myeloma Cell Induction of GFI-1 in Stromal Cells Suppresses Osteoblast Differentiation in Patients with Myeloma Blood, 2009, 114, 742-742.	1.4	7
54	Lenalidomide Shuts Down the Translational Machinery in Multiple Myeloma Cells Resulting in Down-Regulation of Critical Transcription Factors Such as C/EBPβ and IRF4 Blood, 2009, 114. 1844-1844.	1.4	0

DEBORAH L GALSON

#	Article	IF	CITATIONS
55	Activating transcription factor 4 is critical for proliferation and survival in primary bone marrow stromal cells and calvarial osteoblasts. Journal of Cellular Biochemistry, 2008, 105, 885-895.	2.6	30
56	Epigallocatechinâ€3â€gallate diminishes CCL2 expression in human osteoblastic cells via upâ€regulation of phosphatidylinositol 3â€Kinase/Akt/Rafâ€1 interaction: A potential therapeutic benefit for arthritis. Arthritis and Rheumatism, 2008, 58, 3145-3156.	6.7	51
57	General Transcription Factor IIA-Î ³ Increases Osteoblast-specific Osteocalcin Gene Expression via Activating Transcription Factor 4 and Runt-related Transcription Factor 2. Journal of Biological Chemistry, 2008, 283, 5542-5553.	3.4	30
58	CXCL16 Functions as a Novel Chemotactic Factor for Prostate Cancer Cells <i>In vitro</i> . Molecular Cancer Research, 2008, 6, 546-554.	3.4	76
59	Eosinophil chemotactic factor-L (ECF-L) enhances osteoclast formation by increasing in osteoclast precursors expression of LFA-1 and ICAM-1. Bone, 2007, 40, 316-322.	2.9	13
60	Phosphorylation of IRF8 in a pre-associated complex with Spi-1/PU.1 and non-phosphorylated Stat1 is critical for LPS induction of the IL1B gene. Molecular Immunology, 2007, 44, 3364-3379.	2.2	42
61	PTHrP-induced MCP-1 production by human bone marrow endothelial cells and osteoblasts promotes osteoclast differentiation and prostate cancer cell proliferation and invasionin vitro. International Journal of Cancer, 2007, 121, 724-733.	5.1	60
62	Membrane Recruitment of Tec Kinase by RANKL Activates NFATc1 in Osteoclasts. FASEB Journal, 2007, 21, A249.	0.5	1
63	C/EBPβ Is a Critical Factor for Proliferation and Apoptosis in MM Cells by Controlling Transcription Factors Like IRF-4, PAX5 and Blimp1 Blood, 2007, 110, 1506-1506.	1.4	0
64	Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate, 2006, 66, 1311-1318.	2.3	225
65	TRAF6 activation of PI 3-kinase-dependent cytoskeletal changes is cooperative with Ras and is mediated by an interaction with cytoplasmic Src. Journal of Cell Science, 2006, 119, 1579-1591.	2.0	40
66	Nuclear Factor of Activated T-cells (NFAT) Rescues Osteoclastogenesis in Precursors Lacking c-Fos. Journal of Biological Chemistry, 2004, 279, 26475-26480.	3.4	509
67	Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. Journal of Cell Biology, 2004, 164, 509-514.	5.2	183
68	Estrogen Receptor-Related Receptor α Impinges on the Estrogen Axis in Bone: Potential Function in Osteoporosis. Endocrinology, 2002, 143, 3658-3670.	2.8	56
69	Dual regulatory role of human cytomegalovirus immediate-early protein in IL1B transcription is dependent upon Spi-1/PU.1. Biochemical and Biophysical Research Communications, 2002, 294, 854-863.	2.1	5
70	Structure and Molecular Biology of the Calcitonin Receptor. , 2002, , 603-617.		0
71	The role of TNF-receptor family members and other TRAF-dependent receptors in bone resorption. Arthritis Research, 2001, 3, 6.	2.0	78
72	Tissue-specific and Ubiquitous Promoters Direct the Expression of Alternatively Spliced Transcripts from the Calcitonin Receptor Gene. Journal of Biological Chemistry, 2001, 276, 22663-22674.	3.4	60

DEBORAH L GALSON

#	Article	IF	CITATIONS
73	Calcitonin-Dependent Down-Regulation of the Mouse C1a Calcitonin Receptor in Cells of the Osteoclast Lineage Involves a Transcriptional Mechanism*. Endocrinology, 1999, 140, 1060-1068.	2.8	30
74	Phospholipase D- and Protein Kinase C Isoenzyme-Dependent Signal Transduction Pathways Activated by the Calcitonin Receptor*. Endocrinology, 1998, 139, 3241-3248.	2.8	33
75	Immortalization of osteoclast precursors by targeting Bcl -XL and Simian virus 40 large T antigen to the osteoclast lineage in transgenic mice Journal of Clinical Investigation, 1998, 102, 88-97.	8.2	51
76	Phospholipase D- and Protein Kinase C Isoenzyme-Dependent Signal Transduction Pathways Activated by the Calcitonin Receptor. Endocrinology, 1998, 139, 3241-3248.	2.8	14
77	Erythropoietin gene regulation depends on heme-dependent oxygen sensing and assembly of interacting transcription factors. Kidney International, 1997, 51, 548-552.	5.2	64
78	Expression of the Transcription Factor, Spi-1 (PU.1), in Differentiating Murine Erythroleukemia Cells Is Regulated Post-transcriptionally. Journal of Biological Chemistry, 1996, 271, 3385-3391.	3.4	19
79	The Orphan Receptor Hepatic Nuclear Factor 4 Functions as a Transcriptional Activator for Tissue-Specific and Hypoxia-Specific Erythropoietin Gene Expression and Is Antagonized by EAR3/COUP-TF1. Molecular and Cellular Biology, 1995, 15, 2135-2144.	2.3	193
80	Monocyte Expression of the Human Prointerleukin 1β Gene (<i>IL1B</i>) Is Dependent on Promoter Sequences Which Bind the Hematopoietic Transcription Factor Spi-1/PU.1. Molecular and Cellular Biology, 1995, 15, 59-68.	2.3	145
81	<i>Cis</i> Elements That Regulate the Erythropoietin Gene ^a . Annals of the New York Academy of Sciences, 1994, 718, 21-30.	3.8	6
82	Mouse beta-globin DNA-binding protein B1 is identical to a proto-oncogene, the transcription factor Spi-1/PU.1, and is restricted in expression to hematopoietic cells and the testis Molecular and Cellular Biology, 1993, 13, 2929-2941.	2.3	160
83	The human prointerleukin 1 beta gene requires DNA sequences both proximal and distal to the transcription start site for tissue-specific induction Molecular and Cellular Biology, 1993, 13, 1332-1344.	2.3	164
84	Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements Molecular and Cellular Biology, 1992, 12, 5373-5385.	2.3	217
85	Tissue-specific nuclear factors mediate expression of the CD3 delta gene during T cell development EMBO Journal, 1990, 9, 109-115.	7.8	29
86	Detection of two tissue-specific DNA-binding proteins with affinity for sites in the mouse beta-globin intervening sequence 2 Molecular and Cellular Biology, 1988, 8, 381-392.	2.3	71
87	p62-ZZ domain signaling inhibition prevents MM cell-induced epigenetic repression at the Runx2 promoter and rescues osteoblast differentiation. Bone Abstracts, 0, , .	0.0	0
88	Role of Sphingolipids in Multiple Myeloma Progression, Drug Resistance, and Their Potential as Therapeutic Targets. Frontiers in Oncology, 0, 12, .	2.8	4