Robert R Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3375069/publications.pdf

Version: 2024-02-01

48 papers

2,286 citations

201674 27 h-index 233421 45 g-index

49 all docs 49 docs citations

times ranked

49

2085 citing authors

#	Article	IF	CITATIONS
1	Impacts of Molecular Diagnostic Technologies on Plant Disease Management. Annual Review of Phytopathology, 2000, 38, 207-239.	7.8	218
2	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
3	Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 2018, 163, 2295-2310.	2.1	157
4	A discovery 70 years in the making: characterization of the Rose rosette virus. Journal of General Virology, 2011, 92, 1727-1732.	2.9	127
5	Southern tomato virus: The link between the families Totiviridae and Partitiviridae. Virus Research, 2009, 140, 130-137.	2,2	110
6	Epidemiology of criniviruses: an emerging problem in world agriculture. Frontiers in Microbiology, 2013, 4, 119.	3.5	109
7	Characterization and Recent Advances in Detection of Strawberry Viruses. Plant Disease, 2006, 90, 384-396.	1.4	102
8	De Novo Reconstruction of Consensus Master Genomes of Plant RNA and DNA Viruses from siRNAs. PLoS ONE, 2014, 9, e88513.	2.5	101
9	Viruses and Virus Diseases of <i>Rubus</i> . Plant Disease, 2013, 97, 168-182.	1.4	94
10	Blueberry latent virus: An amalgam of the Partitiviridae and Totiviridae. Virus Research, 2011, 155, 175-180.	2.2	76
11	Safeguarding Fruit Crops in the Age of Agricultural Globalization. Plant Disease, 2015, 99, 176-187.	1.4	72
12	Quarantine Regulations and the Impact of Modern Detection Methods. Annual Review of Phytopathology, 2016, 54, 189-205.	7.8	61
13	Identification and characterization of Raspberry mottle virus, a novel member of the Closteroviridae. Virus Research, 2007, 127, 26-33.	2.2	59
14	New and Emerging Viruses of Blueberry and Cranberry. Viruses, 2012, 4, 2831-2852.	3.3	56
15	A new, widespread emaravirus discovered in blackberry. Virus Research, 2017, 235, 1-5.	2.2	56
16	Genetic characterization of Blueberry necrotic ring blotch virus, a novel RNA virus with unique genetic features. Journal of General Virology, 2013, 94, 1426-1434.	2.9	54
17	A member of a new genus in the Potyviridae infects Rubus. Virus Research, 2008, 131, 145-151.	2.2	51
18	Influence of grapevine leafroll associated viruses (GLRaV-2 and -3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: Phenolics. Food Chemistry, 2009, 112, 889-896.	8.2	50

#	Article	IF	CITATIONS
19	High Risk Strawberry Viruses by Region in the United States and Canada: Implications for Certification, Nurseries, and Fruit Production. Plant Disease, 2013, 97, 1358-1362.	1.4	50
20	Identification and Detection of a Virus Associated with Strawberry Pallidosis Disease. Plant Disease, 2004, 88, 383-390.	1.4	42
21	Transmission, Field Spread, Cultivar Response, and Impact on Yield in Highbush Blueberry Infected with Blueberry scorch virus. Phytopathology, 2000, 90, 474-479.	2.2	38
22	A novel emaravirus is associated with redbud yellow ringspot disease. Virus Research, 2016, 222, 41-47.	2.2	38
23	Influence of grapevine leafroll associated viruses (GLRaV-2 and -3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: Free amino acids, sugars, and organic acids. Food Chemistry, 2009, 117, 99-105.	8.2	34
24	Genetic Variability of Natural Populations of <i>Grapevine leafroll-associated virus 2</i> in Pacific Northwest Vineyards. Phytopathology, 2010, 100, 698-707.	2.2	33
25	A new ophiovirus is associated with blueberry mosaic disease. Virus Research, 2014, 189, 92-96.	2.2	30
26	A Carlavirus Associated with Blueberry Scorch Disease. Phytopathology, 1988, 78, 1636.	2.2	29
27	Viral Interactions Lead to Decline of Blackberry Plants. Plant Disease, 2008, 92, 1288-1292.	1.4	27
28	Molecular characterization and population structure of blackberry vein banding associated virus, new ampelovirus associated with yellow vein disease. Virus Research, 2013, 178, 234-240.	2.2	24
29	Effect of <i>Raspberry bushy dwarf virus, Raspberry leaf mottle virus</i> , and <i>Raspberry latent virus</i> on Plant Growth and Fruit Crumbliness in †Meeker†Red Raspberry. Plant Disease, 2014, 98, 176-183.	1.4	24
30	A Novel Genetic Variant of <i>Grapevine leafroll-associated virus-3</i> (GLRaV-3) from Idaho Grapevines. Plant Disease, 2019, 103, 509-518.	1.4	24
31	Incidence and Ecology of Blackberry yellow vein associated virus. Plant Disease, 2007, 91, 809-813.	1.4	21
32	Population structure of blueberry mosaic associated virus: Evidence of reassortment in geographically distinct isolates. Virus Research, 2015, 201, 79-84.	2.2	20
33	High Risk Blueberry Viruses by Region in North America; Implications for Certification, Nurseries, and Fruit Production. Viruses, 2018, 10, 342.	3.3	17
34	Comparison of High Throughput Sequencing to Standard Protocols for Virus Detection in Berry Crops. Plant Disease, 2022, 106, 518-525.	1.4	15
35	Evidence of sympatric speciation of elderberry carlaviruses. Virus Research, 2016, 215, 72-75.	2.2	13
36	Control of Virus Diseases of Berry Crops. Advances in Virus Research, 2015, 91, 271-309.	2.1	10

3

#	Article	IF	CITATIONS
37	Management of Tomato Ringspot Virus in Red Raspberry with Crop Rotation. International Journal of Fruit Science, 2005, 5, 55-67.	2.4	9
38	The use of collagenase to improve the detection of plant viruses in vector nematodes by RT-PCR. Journal of Virological Methods, 2009, 155, 91-95.	2.1	9
39	Blueberry fruit drop-associated virus: A New Member of the Family Caulimoviridae Isolated From Blueberry Exhibiting Fruit-Drop Symptoms. Plant Disease, 2016, 100, 2211-2214.	1.4	9
40	A Virus in American Blackcurrant (Ribes americanum) with Distinct Genome Features Reshapes Classification in the Tymovirales. Viruses, 2018, 10, 406.	3.3	8
41	Next-Generation Sequencing of Elite Berry Germplasm and Data Analysis Using a Bioinformatics Pipeline for Virus Detection and Discovery. Methods in Molecular Biology, 2015, 1302, 301-313.	0.9	8
42	A systems-based approach to manage strawberry virus diseases. Canadian Journal of Plant Pathology, 2017, 39, 5-10.	1.4	6
43	Analysis of grape polyamines from Grapevine leafroll associated viruses (GLRaV-2 and -3) infected vines. Food Chemistry, 2010, 122, 1222-1225.	8.2	4
44	First Report of Strawberry Necrotic Shock Virus in Strawberry in Benguet, Philippines. Plant Disease, 2018, 102, 2385-2385.	1.4	4
45	First Report of Cocksfoot Mottle Virus Infecting <i>Dactylis glomerata</i> in Forage Production Fields in California. Plant Disease, 2018, 102, 2050.	1.4	2
46	First evidence of viruses infecting berries in Mexico. Journal of Plant Pathology, 2020, 102, 183-189.	1.2	1
47	In memoriam/À la mémoire de. Canadian Journal of Plant Pathology, 2017, 39, 1-4.	1.4	0
48	Special Issue "Plant Virus Epidemiology and Control― Viruses, 2020, 12, 309.	3.3	0