
Natalie L Payne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3374918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploiting the preferential phagocytic uptake of nanoparticle-antigen conjugates for the effective treatment of autoimmunity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102481.	3.3	3
2	In Vitro Suppression of T Cell Proliferation Is a Conserved Function of Primary and Immortalized Human Cancer-Associated Fibroblasts. International Journal of Molecular Sciences, 2021, 22, 1827.	4.1	11
3	Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nature Communications, 2021, 12, 6495.	12.8	91
4	Redirecting adult mesenchymal stromal cells to the brain: a new approach for treating <scp>CNS</scp> autoimmunity and neuroinflammation?. Immunology and Cell Biology, 2018, 96, 347-357.	2.3	5
5	Optimization Techniques for miRNA Expression in Low Frequency Immune Cell Populations. Methods in Molecular Biology, 2018, 1725, 237-256.	0.9	0
6	Essential role for CCR6 in certain inflammatory diseases demonstrated using specific antagonist and knockin mice. JCI Insight, 2017, 2, .	5.0	24
7	B cell-derived transforming growth factor-l²1 expression limits the induction phase of autoimmune neuroinflammation. Scientific Reports, 2016, 6, 34594.	3.3	56
8	Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen. Acta Neuropathologica, 2016, 132, 43-58.	7.7	75
9	Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2015, 12, 112.	7.2	66
10	Neuroprotective Potential of Mesenchymal Stem Cell-Based Therapy in Acute Stages of TNBS-Induced Colitis in Guinea-Pigs. PLoS ONE, 2015, 10, e0139023.	2.5	20
11	Combination therapy of mesenchymal stem cells and serelaxin effectively attenuates renal fibrosis in obstructive nephropathy. FASEB Journal, 2015, 29, 540-553.	0.5	70
12	Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 2015, 32, 212-228.	4.4	34
13	Mesenchymal stem cells and conditioned medium avert enteric neuropathy and colon dysfunction in guinea pig TNBS-induced colitis. American Journal of Physiology - Renal Physiology, 2014, 307, G1115-G1129.	3.4	38
14	Single β3-amino acid substitutions to MOG peptides suppress the development of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 277, 67-76.	2.3	9
15	Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2014, 306, F1222-F1235.	2.7	119
16	Fine Structure of Neurally Differentiated iPS Cells Generated from a Multiple Sclerosis (MS) Patient: A Case Study. Microscopy and Microanalysis, 2014, 20, 1869-1875.	0.4	1
17	Alveolar Macrophages Are Critical for the Inhibition of Allergic Asthma by Mesenchymal Stromal Cells. Journal of Immunology, 2013, 191, 5914-5924.	0.8	85
18	Distinct Immunomodulatory and Migratory Mechanisms Underpin the Therapeutic Potential of Human Mesenchymal Stem Cells in Autoimmune Demyelination. Cell Transplantation, 2013, 22, 1409-1425.	2.5	81

NATALIE L PAYNE

#	Article	IF	CITATIONS
19	Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity. Brain, Behavior, and Immunity, 2013, 30, 103-114.	4.1	53
20	Early intervention with gene-modified mesenchymal stem cells overexpressing interleukin-4 enhances anti-inflammatory responses and functional recovery in experimental autoimmune demyelination. Cell Adhesion and Migration, 2012, 6, 179-189.	2.7	65
21	Comparative Study on the Therapeutic Potential of Neurally Differentiated Stem Cells in a Mouse Model of Multiple Sclerosis. PLoS ONE, 2012, 7, e35093.	2.5	19
22	The Prospect of Stem Cells as Multi-Faceted Purveyors of Immune Modulation, Repair and Regeneration in Multiple Sclerosis. Current Stem Cell Research and Therapy, 2011, 6, 50-62.	1.3	32
23	Secondary Lymphoid Organs in Mesenchymal Stromal Cell Therapy: More Than Just a Filter. Frontiers in Immunology, 0, 13, .	4.8	3