
Yuanjia Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3374582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNAâ€146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis and Rheumatism, 2009, 60, 1065-1075.	6.7	679
2	MicroRNA-21 and MicroRNA-148a Contribute to DNA Hypomethylation in Lupus CD4+ T Cells by Directly and Indirectly Targeting DNA Methyltransferase 1. Journal of Immunology, 2010, 184, 6773-6781.	0.4	499
3	The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nature Medicine, 2012, 18, 1077-1086.	15.2	397
4	Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15838-15843.	3.3	324
5	A Functional Variant in MicroRNA-146a Promoter Modulates Its Expression and Confers Disease Risk for Systemic Lupus Erythematosus. PLoS Genetics, 2011, 7, e1002128.	1.5	241
6	miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood, 2010, 116, 5885-5894.	0.6	233
7	Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Journal of Autoimmunity, 2016, 75, 96-104.	3.0	233
8	MicroRNAâ€125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 3425-3435.	6.7	212
9	MicroRNAs—novel regulators of systemic lupus erythematosus pathogenesis. Nature Reviews Rheumatology, 2012, 8, 701-709.	3.5	143
10	MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis. Nature Communications, 2015, 6, 7096.	5.8	133
11	miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. Journal of Cell Science, 2012, 125, 1673-82.	1.2	132
12	Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nature Communications, 2021, 12, 772.	5.8	128
13	Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2021, 80, 632-640.	0.5	103
14	Identification of microRNAâ€31 as a novel regulator contributing to impaired interleukinâ€2 production in T cells from patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2012, 64, 3715-3725.	6.7	97
15	Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Research and Therapy, 2015, 17, 131.	1.6	92
16	The role of long non-coding RNAs in rheumatic diseases. Nature Reviews Rheumatology, 2017, 13, 657-669.	3.5	65
17	MicroRNAâ€∎30b Ameliorates Murine Lupus Nephritis Through Targeting the Type I Interferon Pathway on Renal Mesangial Cells. Arthritis and Rheumatology, 2016, 68, 2232-2243.	2.9	59
18	T-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupus. Arthritis Research and Therapy, 2017, 19, 225.	1.6	58

Yuanjia Tang

#	Article	IF	CITATIONS
19	In Vivo Therapeutic Success of MicroRNAâ€155 Antagomir in a Mouse Model of Lupus Alveolar Hemorrhage. Arthritis and Rheumatology, 2016, 68, 953-964.	2.9	57
20	MiR-125a-5p ameliorates monocrotaline-induced pulmonary arterial hypertension by targeting the TGF-β1 and IL-6/STAT3 signaling pathways. Experimental and Molecular Medicine, 2018, 50, 1-11.	3.2	56
21	Identification of LncRNA Linc00513 Containing Lupus-Associated Genetic Variants as a Novel Regulator of Interferon Signaling Pathway. Frontiers in Immunology, 2018, 9, 2967.	2.2	56
22	MicroRNA-125a-Loaded Polymeric Nanoparticles Alleviate Systemic Lupus Erythematosus by Restoring Effector/Regulatory T Cells Balance. ACS Nano, 2020, 14, 4414-4429.	7.3	53
23	Type I Interferon Inhibition of MicroRNAâ€146a Maturation Through Upâ€Regulation of Monocyte Chemotactic Protein–Induced Protein 1 in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2015, 67, 3209-3218.	2.9	51
24	Exome-wide association study identifies four novel loci for systemic lupus erythematosus in Han Chinese population. Annals of the Rheumatic Diseases, 2018, 77, 417-417.	0.5	50
25	SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression. Nature Communications, 2021, 12, 135.	5.8	48
26	Zirconia Hybrid Nanoshells for Nutrient and Toxin Detection. Small, 2020, 16, e2003902.	5.2	37
27	Identification of Cyclinâ€Dependent Kinase 1 as a Novel Regulator of Type I Interferon Signaling in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2016, 68, 1222-1232.	2.9	35
28	Enhanced transfection of polyplexes based on pluronic-polypropylenimine dendrimer for gene transfer. Archives of Pharmacal Research, 2009, 32, 1045-1054.	2.7	28
29	MicroRNA-125b/Lin28 Pathway Contributes to the Mesendodermal Fate Decision of Embryonic Stem Cells. Stem Cells and Development, 2012, 21, 1524-1537.	1.1	25
30	miR-744 enhances type I interferon signaling pathway by targeting PTP1B in primary human renal mesangial cells. Scientific Reports, 2015, 5, 12987.	1.6	23
31	MiR-125a Is a critical modulator for neutrophil development. PLoS Genetics, 2017, 13, e1007027.	1.5	19
32	Genetic polymorphism in the 3′â€untranslated region of the Eâ€cadherin gene is associated with risk of different cancers. Molecular Carcinogenesis, 2011, 50, 857-862.	1.3	17
33	SARS-CoV-2-Encoded MiRNAs Inhibit Host Type I Interferon Pathway and Mediate Allelic Differential Expression of Susceptible Gene. Frontiers in Immunology, 2021, 12, 767726.	2.2	17
34	Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative IncRNA and DNA methylation machinery. Nature Communications, 2022, 13, 1855.	5.8	16
35	Interferon-α exacerbates neuropsychiatric phenotypes in lupus-prone mice. Arthritis Research and Therapy, 2019, 21, 205.	1.6	14
36	Paradoxical effects of very low dose MK-801. European Journal of Pharmacology, 2006, 537, 77-84.	1.7	12

Yuanjia Tang

#	Article	IF	CITATIONS
37	miR-152 Attenuates the Severity of Lupus Nephritis Through the Downregulation of Macrophage Migration Inhibitory Factor (MIF)-Induced Expression of COL1A1. Frontiers in Immunology, 2019, 10, 158.	2.2	12
38	A Novel Vector-Based Method for Exclusive Overexpression of Star-Form MicroRNAs. PLoS ONE, 2012, 7, e41504.	1.1	9
39	Protective Role of microRNA-31 in Acetaminophen-Induced Liver Injury: A Negative Regulator of c-Jun N-Terminal Kinase (JNK) Signaling Pathway. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1789-1807.	2.3	6
40	The MicroRNA <i>miR-22</i> Represses Th17 Cell Pathogenicity by Targeting PTEN-Regulated Pathways. ImmunoHorizons, 2020, 4, 308-318.	0.8	6
41	Epigenetics of Lupus. , 2019, , 69-85.		0