
## Natalya A Gloushankova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3374420/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Microstructure and biological properties of titanium dioxide coatings doped with bioactive and bactericidal elements. Applied Surface Science, 2022, 575, 151755.                                                                      | 3.1 | 10        |
| 2  | Dual role of E-cadherin in cancer cells. Tissue Barriers, 2022, 10, 2005420.                                                                                                                                                           | 1.6 | 11        |
| 3  | Phenotypic Plasticity of Cancer Cells Based on Remodeling of the Actin Cytoskeleton and Adhesive<br>Structures. International Journal of Molecular Sciences, 2021, 22, 1821.                                                           | 1.8 | 22        |
| 4  | Different concepts for creating antibacterial yet biocompatible surfaces: Adding bactericidal element,<br>grafting therapeutic agent through COOH plasma polymer and their combination. Applied Surface<br>Science, 2021, 556, 149751. | 3.1 | 11        |
| 5  | Early Events in Actin Cytoskeleton Dynamics and E-Cadherin-Mediated Cell-Cell Adhesion during Epithelial-Mesenchymal Transition. Cells, 2020, 9, 578.                                                                                  | 1.8 | 33        |
| 6  | Ag(Pt) nanoparticles-decorated bioactive yet antibacterial Ca- and P-doped TiO2 coatings produced by plasma electrolytic oxidation and ion implantation. Applied Surface Science, 2020, 516, 146068.                                   | 3.1 | 34        |
| 7  | Bioactive TiCaPCON-coated PCL nanofibers as a promising material for bone tissue engineering. Applied Surface Science, 2019, 479, 796-802.                                                                                             | 3.1 | 23        |
| 8  | Comparison of Different Approaches to Surface Functionalization of Biodegradable<br>Polycaprolactone Scaffolds. Nanomaterials, 2019, 9, 1769.                                                                                          | 1.9 | 37        |
| 9  | Microstructure, chemical and biological performance of boron-modified TiCaPCON films. Applied Surface Science, 2019, 465, 486-497.                                                                                                     | 3.1 | 7         |
| 10 | An In Vitro System to Study the Epithelial–Mesenchymal Transition In Vitro. Methods in Molecular<br>Biology, 2018, 1749, 29-42.                                                                                                        | 0.4 | 2         |
| 11 | Role of Epithelial-Mesenchymal Transition in Tumor Progression. Biochemistry (Moscow), 2018, 83, 1469-1476.                                                                                                                            | 0.7 | 57        |
| 12 | Antibacterial Performance of TiCaPCON Films Incorporated with Ag, Pt, and Zn: Bactericidal Ions<br>Versus Surface Microgalvanic Interactions. ACS Applied Materials & Interfaces, 2018, 10,<br>24406-24420.                            | 4.0 | 18        |
| 13 | Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization. Materials and Design, 2018, 153, 60-70.                                                                           | 3.3 | 54        |
| 14 | INDUCTION OF EPITHELIAL-TO-MESENCHYMAL TRANSITION IN MCF-7-SNAI1 CELLS LEADS TO REORGANIZATION OF ADHERENS JUNCTIONS AND ACQUISITION OF MIGRATORY ACTIVITY. Siberian Journal of Oncology, 2018, 17, 24-29.                             | 0.1 | 0         |
| 15 | Effect of BN Nanoparticles Loaded with Doxorubicin on Tumor Cells with Multiple Drug Resistance.<br>ACS Applied Materials & Interfaces, 2017, 9, 32498-32508.                                                                          | 4.0 | 27        |
| 16 | Cadherin-mediated cell-cell interactions in normal and cancer cells. Tissue Barriers, 2017, 5, e1356900.                                                                                                                               | 1.6 | 102       |
| 17 | Combustion synthesis of Ti-C-Co-Ca3(PO4)2-Ag-Mg electrodes and their utilization for pulsed electrospark deposition of bioactive coatings having an antibacterial effect. Surface and Coatings Technology, 2017, 309, 75-85.           | 2.2 | 6         |
| 18 | Structural transformations in TiC-CaO-Ti3PO(x)-(Ag2Ca) electrodes and biocompatible TiCaPCO(N)-(Ag) coatings during pulsed electrospark deposition. Surface and Coatings Technology, 2016, 302, 327-335.                               | 2.2 | 9         |

## Natalya A Gloushankova

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Characteristics and in vitro response of thin hydroxyapatite–titania films produced by plasma<br>electrolytic oxidation of Ti alloys in electrolytes with particle additions. RSC Advances, 2016, 6,<br>12688-12698.                         | 1.7 | 32        |
| 20 | Two approaches to form antibacterial surface: Doping with bactericidal element and drug loading.<br>Applied Surface Science, 2015, 330, 339-350.                                                                                             | 3.1 | 14        |
| 21 | Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems. ACS<br>Applied Materials & Interfaces, 2015, 7, 17217-17225.                                                                                      | 4.0 | 87        |
| 22 | Toward bioactive yet antibacterial surfaces. Colloids and Surfaces B: Biointerfaces, 2015, 135, 158-165.                                                                                                                                     | 2.5 | 39        |
| 23 | A Novel Role of E-Cadherin-Based Adherens Junctions in Neoplastic Cell Dissemination. PLoS ONE, 2015, 10, e0133578.                                                                                                                          | 1.1 | 16        |
| 24 | Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films. Applied Surface Science, 2013, 285, 331-343.                                                                                                                       | 3.1 | 25        |
| 25 | Recent progress in the field of multicomponent bioactive nanostructured films. RSC Advances, 2013, 3, 11107.                                                                                                                                 | 1.7 | 14        |
| 26 | Recent Progress in the Field of Multicomponent Biocompatible Nanostructured Films. Key Engineering<br>Materials, 2013, 587, 263-268.                                                                                                         | 0.4 | 0         |
| 27 | A new combined approach to metal-ceramic implants with controllable surface topography, chemistry, blind porosity, and wettability. Surface and Coatings Technology, 2012, 208, 14-23.                                                       | 2.2 | 30        |
| 28 | Morphology, cell-cell interactions, and migratory activity of IAR-2 epithelial cells transformed with<br>the RAS oncogene: Contribution of cell adhesion protein E-Cadherin. Russian Journal of<br>Developmental Biology, 2011, 42, 402-411. | 0.1 | 8         |
| 29 | The influence of elemental composition and surface topography on adhesion, proliferation and differentiation of osteoblasts. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2010, 4, 272-276.                         | 0.3 | 4         |
| 30 | Si-doped multifunctional bioactive nanostructured films. Surface and Coatings Technology, 2010, 205, 728-739.                                                                                                                                | 2.2 | 33        |
| 31 | Rearrangements of the Actin Cytoskeleton and E-Cadherin–Based Adherens Junctions Caused by<br>Neoplasic Transformation Change Cell–Cell Interactions. PLoS ONE, 2009, 4, e8027.                                                              | 1.1 | 53        |
| 32 | Ta-doped multifunctional bioactive nanostructured films. Surface and Coatings Technology, 2008, 202, 3615-3624.                                                                                                                              | 2.2 | 35        |
| 33 | Changes in regulation of cell—cell adhesion during tumor transformation. Biochemistry (Moscow),<br>2008, 73, 742-750.                                                                                                                        | 0.7 | 38        |
| 34 | Multifunctional biocompatible nanostructured coatings for load-bearing implants. Surface and Coatings Technology, 2006, 201, 4111-4118.                                                                                                      | 2.2 | 56        |
| 35 | Multifunctional Ti–(Ca,Zr)–(C,N,O,P) films for load-bearing implants. Biomaterials, 2006, 27, 3519-31.                                                                                                                                       | 5.7 | 44        |
| 36 | Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications. Biomaterials, 2005, 26, 2909-2924.                                                                                           | 5.7 | 81        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Continual assembly of desmosomes within stable intercellular contacts of epithelial A-431 cells. Cell and Tissue Research, 2003, 314, 399-410.                                                                                                                   | 1.5 | 27        |
| 38 | Myosin-dependent contractile activity of the actin cytoskeleton modulates the spatial organization of<br>cell-cell contacts in cultured epitheliocytes. Proceedings of the National Academy of Sciences of the<br>United States of America, 1999, 96, 9666-9670. | 3.3 | 58        |
| 39 | Dynamics of contacts between lamellae of fibroblasts: Essential role of the actin cytoskeleton.<br>Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4362-4367.                                                         | 3.3 | 70        |
| 40 | Cell-cell contact changes the dynamics of lamellar activity in nontransformed epitheliocytes but not<br>in their ras-transformed descendants. Proceedings of the National Academy of Sciences of the United<br>States of America, 1997, 94, 879-883.             | 3.3 | 57        |
| 41 | Changes in p53 expression can modify cell shape of ras-transformed fibroblasts and epitheliocytes.<br>Oncogene, 1997, 15, 2985-2989.                                                                                                                             | 2.6 | 33        |
| 42 | Dynamics of active lamellae in cultured epithelial cells: effects of expression of exogenous N-ras<br>oncogene Proceedings of the National Academy of Sciences of the United States of America, 1995, 92,<br>5322-5325.                                          | 3.3 | 9         |
| 43 | Role of the microtubular system in morphological organization of normal and oncogene-transfected epithelial cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8597-8601.                                          | 3.3 | 25        |