Christiane Zarfl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3374382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using the WWF Water Risk Filter to Screen Existing and Projected Hydropower Projects for Climate and Biodiversity Risks. Water (Switzerland), 2022, 14, 721.	1.2	7
2	The delicate balance of river sediments. Science, 2022, 376, 1385-1386.	6.0	4
3	Combined effects of lifeâ€history traits and human impact on extinction risk of freshwater megafauna. Conservation Biology, 2021, 35, 643-653.	2.4	18

4 Integrated Impact Assessment for Sustainable Hydropower Planning in the Vjosa Catchment (Greece,) Tj ETQq0 0 0 rgBT /Overlock 10 T

5	Suspended Particulate Matter—A Source or Sink for Chemical Mixtures of Organic Micropollutants in a Small River under Baseflow Conditions?. Environmental Science & Technology, 2021, 55, 5106-5116.	4.6	24
6	Characterization of a landslide-triggered debris flow at a rainforest-covered mountain region in Brazil. Natural Hazards, 2021, 108, 3021-3043.	1.6	13
7	Global Dam Watch: curated data and tools for management and decision making. Environmental Research: Infrastructure and Sustainability, 2021, 1, 033003.	0.9	7
8	Impacts of loss of free-flowing rivers on global freshwater megafauna. Biological Conservation, 2021, 263, 109335.	1.9	23
9	Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals. Environmental Toxicology and Chemistry, 2020, 39, 269-286.	2.2	42
10	Structural changes of the microplankton community following a pulse of inorganic nitrogen in a eutrophic river. Limnology and Oceanography, 2020, 65, S264.	1.6	5
11	Comparison of environmental tracers including organic micropollutants as groundwater exfiltration indicators into a small river of a karstic catchment. Hydrological Processes, 2020, 34, 4712-4726.	1.1	4
12	Exploring the Concepts of Concentration Addition and Independent Action Using a Linear Lowâ€Effect Mixture Model. Environmental Toxicology and Chemistry, 2020, 39, 2552-2559.	2.2	37
13	Analyzing Particle-Associated Pollutant Transport to Identify In-Stream Sediment Processes during a High Flow Event. Water (Switzerland), 2020, 12, 1794.	1.2	13
14	Influence of Emission Sources and Tributaries on the Spatial and Temporal Patterns of Micropollutant Mixtures and Associated Effects in a Small River. Environmental Toxicology and Chemistry, 2020, 39, 1382-1391.	2.2	15
15	SMART Research: Toward Interdisciplinary River Science in Europe. Frontiers in Environmental Science, 2020, 8, .	1.5	6
16	Temporal and spatial variable in-stream attenuation of selected pharmaceuticals. Science of the Total Environment, 2020, 741, 139514.	3.9	16
17	Dams and protected areas: Quantifying the spatial and temporal extent of global dam construction within protected areas. Conservation Letters, 2020, 13, e12719.	2.8	38
18	Rethinking megafauna. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192643.	1.2	35

CHRISTIANE ZARFL

#	Article	IF	CITATIONS
19	River dam impacts on biogeochemical cycling. Nature Reviews Earth & Environment, 2020, 1, 103-116.	12.2	372
20	Impact of Scientific Scrutiny after the 2016 Braunsbach Flash Flood on Flood-Risk Management in the State of Baden-Württemberg, Germany. Water (Switzerland), 2020, 12, 1165.	1.2	3
21	Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3648-3655.	3.3	227
22	European rivers are fragmented by many more barriers than had been recorded. Nature, 2020, 588, 395-396.	13.7	6
23	The global decline of freshwater megafauna. Global Change Biology, 2019, 25, 3883-3892.	4.2	158
24	Designing field-based investigations of organic micropollutant fate in rivers. Environmental Science and Pollution Research, 2019, 26, 28633-28649.	2.7	3
25	Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environmental Research Letters, 2019, 14, 084034.	2.2	106
26	Combined Ion-Trapping and Mass Balance Models To Describe the pH-Dependent Uptake and Toxicity of Acidic and Basic Pharmaceuticals in Zebrafish Embryos (<i>Danio rerio</i>). Environmental Science & Technology, 2019, 53, 7877-7886.	4.6	27
27	Microplastic–Contaminant Interactions: Influence of Nonlinearity and Coupled Mass Transfer. Environmental Toxicology and Chemistry, 2019, 38, 1635-1644.	2.2	29
28	Promising techniques and open challenges for microplastic identification and quantification in environmental matrices. Analytical and Bioanalytical Chemistry, 2019, 411, 3743-3756.	1.9	145
29	Turnover and legacy of sediment-associated PAH in a baseflow-dominated river. Science of the Total Environment, 2019, 671, 754-764.	3.9	19
30	A Model-Based Analysis of Metal Fate in the Thames Estuary. Estuaries and Coasts, 2019, 42, 1185-1201.	1.0	10
31	Mitochondrial Toxicity of Selected Micropollutants, Their Mixtures, and Surface Water Samples Measured by the Oxygen Consumption Rate in Cells. Environmental Toxicology and Chemistry, 2019, 38, 1000-1011.	2.2	12
32	Future large hydropower dams impact global freshwater megafauna. Scientific Reports, 2019, 9, 18531.	1.6	96
33	Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Global Change Biology, 2019, 25, 1591-1611.	4.2	71
34	Unravelling metal mobility under complex contaminant signatures. Science of the Total Environment, 2018, 622-623, 373-384.	3.9	25
35	Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 2018, 24, 1405-1416.	4.2	1,303
36	A combined experimental and modeling study to evaluate pH-dependent sorption of polar and non-polar compounds to polyethylene and polystyrene microplastics. Environmental Sciences Europe, 2018, 30, 30.	2.6	106

CHRISTIANE ZARFL

#	Article	IF	CITATIONS
37	Global Water Transfer Megaprojects: A Potential Solution for the Water-Food-Energy Nexus?. Frontiers in Environmental Science, 2018, 6, .	1.5	120
38	Combining in vitro reporter gene bioassays with chemical analysis to assess changes in the water quality along the Ammer River, Southwestern Germany. Environmental Sciences Europe, 2018, 30, 20.	2.6	27
39	Contributions of catchment and in-stream processes to suspended sediment transport in a dominantly groundwater-fed catchment. Hydrology and Earth System Sciences, 2018, 22, 3903-3921.	1.9	14
40	Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part I: Effects of Bisphenol A on Freshwater Zooplankton Are Lower in Presence of Polyamide Particles. International Journal of Environmental Research and Public Health, 2018, 15, 280.	1.2	98
41	Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part II: Polyethylene Particles Decrease the Effect of Polycyclic Aromatic Hydrocarbons on Microorganisms. International Journal of Environmental Research and Public Health, 2018, 15, 287.	1.2	96
42	The connectivity between soil erosion and sediment entrapment in reservoirs. Current Opinion in Environmental Science and Health, 2018, 5, 53-59.	2.1	28
43	Freshwater megafauna diversity: Patterns, status and threats. Diversity and Distributions, 2018, 24, 1395-1404.	1.9	59
44	Projections of historical and 21st century fluvial sediment delivery to the Ganges-Brahmaputra-Meghna, Mahanadi, and Volta deltas. Science of the Total Environment, 2018, 642, 105-116.	3.9	45
45	Disappearing giants: a review of threats to freshwater megafauna. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1208.	2.8	61
46	Low-Dose Effects: Nonmonotonic Responses for the Toxicity of a <i>Bacillus thuringiensis</i> Biocide to <i>Daphnia magna</i> . Environmental Science & Technology, 2017, 51, 1679-1686.	4.6	36
47	Shift in Mass Transfer of Wastewater Contaminants from Microplastics in the Presence of Dissolved Substances. Environmental Science & amp; Technology, 2017, 51, 12254-12263.	4.6	118
48	Freshwater Megafauna: Flagships for Freshwater Biodiversity under Threat. BioScience, 2017, 67, 919-927.	2.2	68
49	Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere, 2016, 153, 91-99.	4.2	367
50	Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Science of the Total Environment, 2016, 541, 268-281.	3.9	237
51	A Global View on Future Major Water Engineering Projects. Water Resources Development and Management, 2016, , 47-64.	0.3	6
52	A global boom in hydropower dam construction. Aquatic Sciences, 2015, 77, 161-170.	0.6	1,512
53	An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters, 2015, 10, 015001.	2.2	439
54	PBT borderline chemicals under REACH. Environmental Sciences Europe, 2013, 25, .	2.6	7

CHRISTIANE ZARFL

#	Article	IF	CITATIONS
55	Response to comment on "ldentification of substances with potential for long-range transport as possible substances of very high concern― Environmental Science and Pollution Research, 2013, 20, 5878-5878.	2.7	0
56	Response to Comment on "Screening Criteria for Long-Range Transport Potential of Organic Substances in Water― Environmental Science & Technology, 2013, 47, 3544-3544.	4.6	1
57	Identification of substances with potential for long-range transport as possible substances of very high concern. Environmental Science and Pollution Research, 2012, 19, 3152-3161.	2.7	18
58	Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environmental Science and Pollution Research, 2012, 19, 1296-1304.	2.7	165
59	Screening Criteria for Long-Range Transport Potential of Organic Substances in Water. Environmental Science & Technology, 2011, 45, 10075-10081.	4.6	19
60	Microplastics in oceans. Marine Pollution Bulletin, 2011, 62, 1589-1591.	2.3	99
61	Are marine plastic particles transport vectors for organic pollutants to the Arctic?. Marine Pollution Bulletin, 2010, 60, 1810-1814.	2.3	300
62	A conceptual model describing the fate of sulfadiazine and its metabolites observed in manure-amended soils. Chemosphere, 2009, 77, 720-726.	4.2	62
63	A mechanistical model for the uptake of sulfonamides by bacteria. Chemosphere, 2008, 70, 753-760.	4.2	69
64	Growth-inhibitory effects of sulfonamides at different pH: Dissimilar susceptibility patterns of a soil bacterium and a test bacterium used for antibiotic assays. Chemosphere, 2008, 72, 836-843.	4.2	35