
Ricardo Henriques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3374094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Content-aware image restoration: pushing the limits of fluorescence microscopy. Nature Methods, 2018, 15, 1090-1097.	9.0	758
2	Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nature Communications, 2016, 7, 12471.	5.8	468
3	TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO–IKK supramolecular structures. Journal of Cell Biology, 2014, 204, 231-245.	2.3	415
4	QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nature Methods, 2010, 7, 339-340.	9.0	404
5	Democratising deep learning for microscopy with ZeroCostDL4Mic. Nature Communications, 2021, 12, 2276.	5.8	295
6	Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nature Methods, 2018, 15, 263-266.	9.0	266
7	Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nature Methods, 2019, 16, 387-395.	9.0	251
8	Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nature Methods, 2019, 16, 1045-1053.	9.0	236
9	PALM and STORM: Unlocking liveâ€cell superâ€resolution. Biopolymers, 2011, 95, 322-331.	1.2	158
10	Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8564-8569.	3.3	135
11	SRRF: Universal live-cell super-resolution microscopy. International Journal of Biochemistry and Cell Biology, 2018, 101, 74-79.	1.2	130
12	Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. Journal of Experimental Medicine, 2013, 210, 2415-2433.	4.2	128
13	NanoJ: a high-performance open-source super-resolution microscopy toolbox. Journal Physics D: Applied Physics, 2019, 52, 163001.	1.3	120
14	The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division. Developmental Cell, 2018, 45, 132-145.e3.	3.1	111
15	The cell biologist's guide to super-resolution microscopy. Journal of Cell Science, 2020, 133, .	1.2	103
16	K63-Linked Ubiquitination Targets Toxoplasma gondii for Endo-lysosomal Destruction in IFNÎ ³ -Stimulated Human Cells. PLoS Pathogens, 2016, 12, e1006027.	2.1	92
17	Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports, 2016, 17, 1029-1043.	2.0	91
18	Automating multimodal microscopy with NanoJ-Fluidics. Nature Communications, 2019, 10, 1223.	5.8	84

RICARDO HENRIQUES

#	Article	IF	CITATIONS
19	Artificial intelligence for microscopy: what you should know. Biochemical Society Transactions, 2019, 47, 1029-1040.	1.6	75
20	The proteasome controls ESCRT-III–mediated cell division in an archaeon. Science, 2020, 369, .	6.0	63
21	Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to Lysosomes. Cell Host and Microbe, 2018, 24, 866-874.e4.	5.1	62
22	Fix Your Membrane Receptor Imaging: Actin Cytoskeleton and CD4 Membrane Organization Disruption by Chemical Fixation. Frontiers in Immunology, 2019, 10, 675.	2.2	57
23	Avoiding a replication crisis in deep-learning-based bioimage analysis. Nature Methods, 2021, 18, 1136-1144.	9.0	56
24	FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division. Nature Communications, 2021, 12, 2448.	5.8	53
25	PALM and STORM: Into large fields and high-throughput microscopy with sCMOS detectors. Methods, 2015, 88, 109-121.	1.9	49
26	Closed mitosis requires local disassembly of the nuclear envelope. Nature, 2020, 585, 119-123.	13.7	49
27	Between life and death: strategies to reduce phototoxicity in super-resolution microscopy. Journal Physics D: Applied Physics, 2020, 53, 163001.	1.3	49
28	Fluctuation-Based Super-Resolution Traction Force Microscopy. Nano Letters, 2020, 20, 2230-2245.	4.5	47
29	Single-Molecule Localization Super-Resolution Microscopy: Deeper and Faster. Microscopy and Microanalysis, 2012, 18, 1419-1429.	0.2	45
30	Live Imaging of a Hyperthermophilic Archaeon Reveals Distinct Roles for Two ESCRT-III Homologs in Ensuring a Robust and Symmetric Division. Current Biology, 2020, 30, 2852-2859.e4.	1.8	45
31	PALM and STORM: What hides beyond the Rayleigh limit?. Biotechnology Journal, 2009, 4, 846-857.	1.8	44
32	VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy. Scientific Reports, 2016, 6, 29132.	1.6	43
33	TMEM16F activation by Ca2+ triggers plasma membrane expansion and directs PD-1 trafficking. Scientific Reports, 2019, 9, 619.	1.6	35
34	Hierarchies of Host Factor Dynamics at the Entry Site of Shigella flexneri during Host Cell Invasion. Infection and Immunity, 2012, 80, 2548-2557.	1.0	34
35	Nanoscale polarization of the entry fusion complex of vaccinia virus drives efficient fusion. Nature Microbiology, 2019, 4, 1636-1644.	5.9	32
36	High-content 3D multicolor super-resolution localization microscopy. Methods in Cell Biology, 2015, 125, 95-117.	0.5	31

RICARDO HENRIQUES

#	Article	IF	CITATIONS
37	The Field Guide to 3D Printing in Optical Microscopy for Life Sciences. Advanced Biology, 2022, 6, e2100994.	1.4	31
38	DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Communications Biology, 2022, 5, .	2.0	30
39	High-Throughput SNP Genotyping: Combining Tag SNPs and Molecular Beacons. Methods in Molecular Biology, 2009, 578, 255-276.	0.4	27
40	Physical mechanisms of ESCRT-III–driven cell division. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
41	vLUME: 3D virtual reality for single-molecule localization microscopy. Nature Methods, 2020, 17, 1097-1099.	9.0	23
42	Highly Dynamic Host Actin Reorganization around Developing Plasmodium Inside Hepatocytes. PLoS ONE, 2012, 7, e29408.	1.1	22
43	HIV-1 Nef Impairs the Formation of Calcium Membrane Territories Controlling the Signaling Nanoarchitecture at the Immunological Synapse. Journal of Immunology, 2016, 197, 4042-4052.	0.4	21
44	Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti. Nature Communications, 2016, 7, 12629.	5.8	21
45	Infection Counter: Automated Quantification of in Vitro Virus Replication by Fluorescence Microscopy. Viruses, 2016, 8, 201.	1.5	20
46	A hidden Markov model approach to characterizing the photo-switching behavior of fluorophores. Annals of Applied Statistics, 2019, 13, 1397-1429.	0.5	20
47	Frontiers in fluorescence microscopy. International Journal of Developmental Biology, 2009, 53, 1569-1579.	0.3	19
48	Heterogeneous localisation of membrane proteins in Staphylococcus aureus. Scientific Reports, 2018, 8, 3657.	1.6	18
49	eHooke: A tool for automated image analysis of spherical bacteria based on cell cycle progression. Biological Imaging, 2021, 1, e3.	1.0	11
50	Single-Molecule Super-Resolution Imaging of T-Cell Plasma Membrane CD4 Redistribution upon HIV-1 Binding. Viruses, 2021, 13, 142.	1.5	10
51	Superâ€beacons: Openâ€source probes with spontaneous tuneable blinking compatible with liveâ€cell superâ€resolution microscopy. Traffic, 2020, 21, 375-385.	1.3	9
52	Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses, 2021, 13, 233.	1.5	9
53	Open-source Single-particle Analysis for Super-resolution Microscopy with VirusMapper. Journal of Visualized Experiments, 2017, , .	0.2	6
54	The LEGO® brick road to open science and biotechnology. Trends in Biotechnology, 2022, 40, 1073-1087.	4.9	6

#	Article	IF	CITATIONS
55	Real time multi-modal super-resolution microscopy through Super-Resolution Radial Fluctuations (SRRF-Stream). , 2019, , .		4
56	Enhanced epifluorescence microscopy by uniform and intensity optimized illumination. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 278-280.	1.1	2
57	Nanoscale Colocalization of NK Cell Activating and Inhibitory Receptors Controls Signal Integration. Frontiers in Immunology, 2022, 13, .	2.2	2
58	Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. Journal of General Physiology, 2013, 142, 1425OIA44.	0.9	1
59	Regulated vesicle fusion generates signaling nanoterritories that control T-cell activation at the immunological synapse. Journal of Cell Biology, 2013, 203, 2031OIA112.	2.3	0