Jolanta Zakrzewska-Czerwińska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3373808/publications.pdf

Version: 2024-02-01

50 papers 1,456

304743 22 h-index 35 g-index

54 all docs

54 docs citations

54 times ranked 1188 citing authors

#	Article	IF	Citations
1	Regulation of the initiation of chromosomal replication in bacteria. FEMS Microbiology Reviews, 2007, 31, 378-387.	8.6	98
2	oriC-encoded instructions for the initiation of bacterial chromosome replication. Frontiers in Microbiology, 2014, 5, 735.	3.5	95
3	<scp><scp>ParA</scp> of <i><scp>M</scp> ycobacterium smegmatis</i> coâ€ordinates chromosome segregation with the cell cycle and interacts with the polar growth determinant <scp><scp>DivIVA</scp></scp>. Molecular Microbiology, 2013, 87, 998-1012.</scp>	2.5	88
4	ParA and ParB coordinate chromosome segregation with cell elongation and division during <i>Streptomyces</i> sporulation. Open Biology, 2016, 6, 150263.	3.6	80
5	Choreography of the Mycobacterium Replication Machinery during the Cell Cycle. MBio, 2015, 6, e02125-14.	4.1	66
6	Nucleoid Associated Proteins: The Small Organizers That Help to Cope With Stress. Frontiers in Microbiology, 2020, 11, 590.	3.5	61
7	Helicobacter pylori oriC â€"the first bipartite origin of chromosome replication in Gram-negative bacteria. Nucleic Acids Research, 2012, 40, 9647-9660.	14.5	58
8	Architecture of bacterial replication initiation complexes: orisomes from four unrelated bacteria. Biochemical Journal, 2005, 389, 471-481.	3.7	53
9	Characterization of the mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis. Microbiology (United Kingdom), 2007, 153, 4050-4060.	1.8	50
10	HupB Is a Bacterial Nucleoid-Associated Protein with an Indispensable Eukaryotic-Like Tail. MBio, 2017, 8 , .	4.1	47
11	The Role of the N-Terminal Domains of Bacterial Initiator DnaA in the Assembly and Regulation of the Bacterial Replication Initiation Complex. Genes, 2017, 8, 136.	2.4	45
12	Replisome Localization in Vegetative and Aerial Hyphae of Streptomyces coelicolor. Journal of Bacteriology, 2006, 188, 7311-7316.	2.2	41
13	Unique Function of the Bacterial Chromosome Segregation Machinery in Apically Growing Streptomyces - Targeting the Chromosome to New Hyphal Tubes and its Anchorage at the Tips. PLoS Genetics, 2016, 12, e1006488.	3.5	36
14	Architecture of the streptomyces lividans DnaA protein-replication origin complexes. Journal of Molecular Biology, 2000, 298, 351-364.	4.2	34
15	Interactions of theStreptomyces lividansinitiator protein DnaA with its target. FEBS Journal, 1999, 260, 325-335.	0.2	33
16	Assembly of Helicobacter pylori Initiation Complex Is Determined by Sequence-Specific and Topology-Sensitive DnaA–oriC Interactions. Journal of Molecular Biology, 2014, 426, 2769-2782.	4.2	33
17	The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor. Journal of Bacteriology, 2016, 198, 3016-3028.	2.2	32
18	A highly processive topoisomerase I: studies at the single-molecule level. Nucleic Acids Research, 2014, 42, 7935-7946.	14.5	31

#	Article	IF	Citations
19	The studies of ParA and ParB dynamics reveal asymmetry of chromosome segregation in mycobacteria. Molecular Microbiology, 2017, 105, 453-468.	2.5	28
20	Multifork chromosome replication in slow-growing bacteria. Scientific Reports, 2017, 7, 43836.	3.3	27
21	AdpA, key regulator for morphological differentiation regulates bacterial chromosome replication. Open Biology, 2012, 2, 120097.	3.6	26
22	Sequence Recognition, Cooperative Interaction, and Dimerization of the Initiator Protein DnaA of Streptomyces. Journal of Biological Chemistry, 2001, 276, 6243-6252.	3.4	25
23	Initiation of Chromosomal Replication in Predatory Bacterium Bdellovibrio bacteriovorus. Frontiers in Microbiology, 2016, 7, 1898.	3.5	25
24	Amsacrine Derivatives Selectively Inhibit Mycobacterial Topoisomerase I (TopA), Impair M. smegmatis Growth and Disturb Chromosome Replication. Frontiers in Microbiology, 2018, 9, 1592.	3.5	24
25	A simplified method for purification of recombinant soluble DnaA proteins. Protein Expression and Purification, 2006, 48, 126-133.	1.3	23
26	Cholesterol-dependent transcriptome remodeling reveals new insight into the contribution of cholesterol to Mycobacterium tuberculosis pathogenesis. Scientific Reports, 2021, 11, 12396.	3.3	23
27	Phosphorylation of Mycobacterium tuberculosis ParB Participates in Regulating the ParABS Chromosome Segregation System. PLoS ONE, 2015, 10, e0119907.	2.5	23
28	Where and When Bacterial Chromosome Replication Starts: A Single Cell Perspective. Frontiers in Microbiology, 2018, 9, 2819.	3.5	22
29	Beyond DnaA: The Role of DNA Topology and DNA Methylation in Bacterial Replication Initiation. Journal of Molecular Biology, 2014, 426, 2269-2282.	4.2	19
30	Watching DNA Replication Inhibitors in Action: Exploiting Time-Lapse Microfluidic Microscopy as a Tool for Target-Drug Interaction Studies in <i>Mycobacterium</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	19
31	Dynamics of Chromosome Replication and Its Relationship to Predatory Attack Lifestyles in Bdellovibrio bacteriovorus. Applied and Environmental Microbiology, 2019, 85, .	3.1	19
32	Fifty Years after the Replicon Hypothesis: Cell-Specific Master Regulators as New Players in Chromosome Replication Control. Journal of Bacteriology, 2014, 196, 2901-2911.	2.2	18
33	The Origin of Chromosomal Replication Is Asymmetrically Positioned on the Mycobacterial Nucleoid, and the Timing of Its Firing Depends on HupB. Journal of Bacteriology, 2018, 200, .	2.2	16
34	Lsr2, a nucleoid-associated protein influencing mycobacterial cell cycle. Scientific Reports, 2021, 11, 2910.	3.3	16
35	High-Quality Draft Genome Sequence of the Actinobacterium Nocardia terpenica IFM 0406, Producer of the Immunosuppressant Brasilicardins, Using Illumina and PacBio Technologies. Genome Announcements, 2016, 4, .	0.8	14
36	Competition between DivIVA and the nucleoid for ParA binding promotes segrosome separation and modulates mycobacterial cell elongation. Molecular Microbiology, 2019, 111, 204-220.	2.5	14

#	Article	IF	CITATIONS
37	Glutathione S-transferase fusion proteins as an affinity reagent for rapid isolation of specific sequence directly from genomic DNA. Nucleic Acids Research, 1997, 25, 2537-2538.	14.5	13
38	Genetic Engineering in Combination with Semiâ€Synthesis Leads to a New Route for Gramâ€Scale Production of the Immunosuppressive Natural Product Brasilicardinâ€A. Angewandte Chemie - International Edition, 2021, 60, 13536-13541.	13.8	12
39	AfsK-Mediated Site-Specific Phosphorylation Regulates DnaA Initiator Protein Activity in Streptomyces coelicolor. Journal of Bacteriology, 2020, 202, .	2.2	11
40	Lsr2 and Its Novel Paralogue Mediate the Adjustment of Mycobacterium smegmatis to Unfavorable Environmental Conditions. MSphere, 2021, 6, .	2.9	10
41	Functional Disassociation Between the Protein Domains of MSMEG_4305 of Mycolicibacterium smegmatis (Mycobacterium smegmatis) in vivo. Frontiers in Microbiology, 2020, 11, 2008.	3 . 5	8
42	Thiosemicarbazide Derivatives Decrease the ATPase Activity of Staphylococcus aureus Topoisomerase IV, Inhibit Mycobacterial Growth, and Affect Replication in Mycobacterium smegmatis. International Journal of Molecular Sciences, 2021, 22, 3881.	4.1	8
43	Initiation of the Streptomyces chromosome replication. Antonie Van Leeuwenhoek, 2000, 78, 211-221.	1.7	7
44	Streptomycete origin of chromosomal replication with two putative unwinding elements. Microbiology (United Kingdom), 2019, 165, 1365-1375.	1.8	5
45	AdpA Positively Regulates Morphological Differentiation and Chloramphenicol Biosynthesis in Streptomyces venezuelae. Microbiology Spectrum, 2021, 9, e0198121.	3.0	5
46	Rapid detection of staphylococcus saprophytius using primer specific PCR. Acta Biologica Hungarica, 1997, 48, 319-322.	0.7	4
47	Two transcription factors, CabA and CabR, are independently involved in multilevel regulation of the biosynthetic gene cluster encoding the novel aminocoumarin, cacibiocin. Applied Microbiology and Biotechnology, 2016, 100, 3147-3164.	3.6	4
48	Recent Advances in Helicobacter pylori Replication: Possible Implications in Adaptation to a Pathogenic Lifestyle and Perspectives for Drug Design. Current Topics in Microbiology and Immunology, 2017, 400, 73-103.	1.1	4
49	Live-Cell Imaging of the Life Cycle of Bacterial Predator Bdellovibrio bacteriovorus using Time-Lapse Fluorescence Microscopy. Journal of Visualized Experiments, 2020, , .	0.3	1
50	Genetic Engineering in Combination with Semiâ€Synthesis Leads to a New Route for Gramâ€Scale Production of the Immunosuppressive Natural Product Brasilicardinâ€A. Angewandte Chemie, 2021, 133, 13648-13653.	2.0	0