Tao He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3373431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Slippery for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface. Water Research, 2019, 155, 152-161.	5.3	183
2	Combined interface boundary condition method for fluid–rigid body interaction. Computer Methods in Applied Mechanics and Engineering, 2012, 223-224, 81-102.	3.4	82
3	Flow-induced vibrations of four circular cylinders with square arrangement at low Reynolds numbers. Ocean Engineering, 2015, 96, 21-33.	1.9	40
4	Flow over two side-by-side square cylinders by CBS finite element scheme of Spalart–Allmaras model. Ocean Engineering, 2014, 87, 40-49.	1.9	37
5	A CBS-based partitioned semi-implicit coupling algorithm for fluid–structure interaction using MCIBC method. Computer Methods in Applied Mechanics and Engineering, 2016, 298, 252-278.	3.4	30
6	Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method. International Journal of Computational Fluid Dynamics, 2014, 28, 272-300.	0.5	29
7	An Overview of the Combined Interface Boundary Condition Method for Fluid–Structure Interaction. Archives of Computational Methods in Engineering, 2017, 24, 891-934.	6.0	29
8	Insight into the cell-based smoothed finite element method for convection-dominated flows. Computers and Structures, 2019, 212, 215-224.	2.4	28
9	A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid–structure interaction. Computational Mechanics, 2018, 62, 1037-1057.	2.2	25
10	Semi-Implicit Coupling of CS-FEM and FEM for the Interaction Between a Geometrically Nonlinear Solid and an Incompressible Fluid. International Journal of Computational Methods, 2015, 12, 1550025.	0.8	23
11	Improving the CBSâ€based partitioned semiâ€implicit coupling algorithm for fluidâ€structure interaction. International Journal for Numerical Methods in Fluids, 2018, 87, 463-486.	0.9	22
12	The use of artificial compressibility to improve partitioned semi-implicit FSI coupling within the classical Chorin–Témam projection framework. Computers and Fluids, 2018, 166, 64-77.	1.3	22
13	The cell-based smoothed finite element method for viscoelastic fluid flows using fractional-step schemes. Computers and Structures, 2019, 222, 133-147.	2.4	20
14	A strongly-coupled cell-based smoothed finite element solver for unsteady viscoelastic fluid–structure interaction. Computers and Structures, 2020, 235, 106264.	2.4	18
15	A Partitioned Implicit Coupling Strategy for Incompressible Flow Past an Oscillating Cylinder. International Journal of Computational Methods, 2015, 12, 1550012.	0.8	17
16	AC-CBS-Based Partitioned Semi-Implicit Coupling Algorithm for Fluid-Structure Interaction Using Stabilized Second-Order Pressure Scheme. Communications in Computational Physics, 2017, 21, 1449-1474.	0.7	16
17	A cell-based smoothed CBS finite element formulation for computing the Oldroyd-B fluid flow. Journal of Non-Newtonian Fluid Mechanics, 2019, 272, 104162.	1.0	16
18	On a Partitioned Strong Coupling Algorithm for Modeling Fluid–Structure Interaction. International Journal of Applied Mechanics, 2015, 07, 1550021.	1.3	15

ΤΑΟ ΗΕ

#	Article	IF	CITATIONS
19	Characterizing the Land Shareholding Cooperative: A Case Study of Shanglin Village in Jiangsu, China. Sustainability, 2017, 9, 1175.	1.6	15
20	Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes. Wind and Structures, an International Journal, 2015, 20, 423-448.	0.8	15
21	An efficient selective cell-based smoothed finite element approach to fluid-structure interaction. Physics of Fluids, 2020, 32, .	1.6	14
22	Towards straightforward use of cell-based smoothed finite element method in fluid–structure interaction. Ocean Engineering, 2018, 157, 350-363.	1.9	13
23	Combined interface boundary condition method for fluid–structure interaction: Some improvements and extensions. Ocean Engineering, 2015, 109, 243-255.	1.9	12
24	Stabilization of a smoothed finite element semi-implicit coupling scheme for viscoelastic fluid–structure interaction. Journal of Non-Newtonian Fluid Mechanics, 2021, 292, 104545.	1.0	12
25	End effect on determining shear modulus of timber beams in torsion tests. Construction and Building Materials, 2018, 164, 442-450.	3.2	10
26	A truly meshâ€distortionâ€enabled implementation of cellâ€based smoothed finite element method for incompressible fluid flows with fixed and moving boundaries. International Journal for Numerical Methods in Engineering, 2020, 121, 3227-3248.	1.5	10
27	Modeling fluid–structure interaction with the edge-based smoothed finite element method. Journal of Computational Physics, 2022, 460, 111171.	1.9	10
28	A three-field smoothed formulation for partitioned fluid–structure interaction via nonlinear block-Gauss–Seidel procedure. Numerical Heat Transfer, Part B: Fundamentals, 2019, 75, 198-216.	0.6	8
29	A stabilized cellâ€based smoothed finite element method against severe mesh distortion in nonâ€Newtonian fluid–structure interaction. International Journal for Numerical Methods in Engineering, 2022, 123, 2162-2184.	1.5	7
30	Cell-based smoothed finite element method for simulating vortex-induced vibration of multiple bluff bodies. Journal of Fluids and Structures, 2020, 98, 103140.	1.5	6
31	A Three-Field Smoothed Formulation for Prediction of Large-Displacement Fluid-Structure Interaction via the Explicit Relaxed Interface Coupling (ERIC) Scheme. Communications in Computational Physics, 2018, 24, .	0.7	6
32	On the edgeâ€based smoothed finite element approximation of viscoelastic fluid flows. International Journal for Numerical Methods in Fluids, 2022, 94, 423-442.	0.9	6
33	Cell-Based Smoothed Finite-Element Framework for Strongly Coupled Non-Newtonian Fluid–Structure Interaction. Journal of Engineering Mechanics - ASCE, 2021, 147, 04021062.	1.6	5
34	Extending the cellâ€based smoothed finite element method into strongly coupled fluid–thermal–structure interaction. International Journal for Numerical Methods in Fluids, 2021, 93, 1269-1291.	0.9	2
35	Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams. Structural Engineering and Mechanics, 2016, 59, 1139-1153.	1.0	2
36	An edgeâ€based smoothed finite element framework for partitioned simulation of vortexâ€induced vibration problems. International Journal for Numerical Methods in Fluids, 2022, 94, 1863-1887.	0.9	2