List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/33734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food web assessments in the Baltic Sea: Models bridging the gap between indicators and policy needs. Ambio, 2022, 51, 1687-1697.	5.5	7
2	Global climate change and the Baltic Sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning. Earth System Dynamics, 2022, 13, 711-747.	7.1	28
3	Eutrophication: Early warning signals, ecosystem-level and societal responses, and ways forward. Ambio, 2021, 50, 753-758.	5.5	21
4	Disentangling temporal food web dynamics facilitates understanding of ecosystem functioning. Journal of Animal Ecology, 2021, 90, 1205-1216.	2.8	28
5	ldentifying biotic drivers of population dynamics in a benthic–pelagic community. Ecology and Evolution, 2021, 11, 4035-4045.	1.9	5
6	Impact of round goby on native invertebrate communities - An experimental field study. Journal of Experimental Marine Biology and Ecology, 2021, 541, 151571.	1.5	12
7	Factors regulating the coastal nutrient filter in the Baltic Sea. Ambio, 2020, 49, 1194-1210.	5.5	61
8	Habitat utilization and feeding ecology of small round goby in a shallow brackish lagoon. Marine Biodiversity, 2020, 50, 1.	1.0	10
9	Epibenthic megafauna communities in Northeast Greenland vary across coastal, continental shelf and slope habitats. Polar Biology, 2020, 43, 1623-1642.	1.2	7
10	Attuning to a changing ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20363-20371.	7.1	9
11	Ecological coherence of Marine Protected Areas: New tools applied to the Baltic Sea network. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 743-760.	2.0	25
12	Predation risk and competition affect habitat use of adult perch, Perca fluviatilis. Journal of Fish Biology, 2020, 96, 669-680.	1.6	2
13	Coastal habitats and their importance for the diversity of benthic communities: A species- and trait-based approach. Estuarine, Coastal and Shelf Science, 2019, 226, 106272.	2.1	52
14	Exploring the temporal variability of a food web using longâ€ŧerm biomonitoring data. Ecography, 2019, 42, 2107-2121.	4.5	36
15	Brackish-Water Benthic Fauna Under Fluctuating Environmental Conditions: The Role of Eutrophication, Hypoxia, and Global Change. Frontiers in Marine Science, 2019, 6, .	2.5	10
16	Baltic Sea: A Recovering Future From Decades of Eutrophication. , 2019, , 343-362.		24
17	Four decades of functional community change reveals gradual trends and low interlinkage across trophic groups in a large marine ecosystem. Global Change Biology, 2019, 25, 1235-1246.	9.5	32
18	Functional biodiversity of marine soft-sediment polychaetes from two Mediterranean coastal areas in relation to environmental stress. Marine Environmental Research, 2018, 137, 121-132.	2.5	32

#	Article	IF	CITATIONS
19	Competition for the fish – fish extraction from the Baltic Sea by humans, aquatic mammals, and birds. ICES Journal of Marine Science, 2018, 75, 999-1008.	2.5	94
20	The wicked ocean. Ambio, 2018, 47, 265-268.	5.5	2
21	Green tides on inter- and subtidal sandy shores: differential impacts on infauna and flatfish. Journal of the United Kingdom, 2018, 98, 699-712.	0.8	11
22	The food web positioning and trophic niche of the non-indigenous round goby: a comparison between two Baltic Sea populations. Hydrobiologia, 2018, 822, 111-128.	2.0	17
23	Response to comments by Heikinheimo et al. (in press) on Hansson et al. (2018): competition for the fish—fish extraction from the Baltic Sea by humans, aquatic mammals, and birds. ICES Journal of Marine Science, 2018, 75, 1837-1839.	2.5	3
24	The Baltic Sea as a time machine for the future coastal ocean. Science Advances, 2018, 4, eaar8195.	10.3	339
25	Trait-based predation suitability offers insight into effects of changing prey communities. PeerJ, 2018, 6, e5899.	2.0	5
26	The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Global Change Biology, 2017, 23, 2179-2196.	9.5	294
27	Deep soft seabeds. , 2017, , 359-385.		2
28	Organic enrichment simplifies marine benthic food web structure. Limnology and Oceanography, 2017, 62, 2179-2188.	3.1	12
29	Biodiversity, feeding habits and reproductive strategies of benthic macrofauna in a protected area of the northern Adriatic Sea: a three-year study. Mediterranean Marine Science, 2017, 18, 292.	1.6	9
30	Mesograzer identity, not host algae, determines consumer stable isotope ratios. Marine Biology Research, 2016, 12, 186-192.	0.7	7
31	Seasonal shifts in the vertical distribution of fish in a shallow coastal area. ICES Journal of Marine Science, 2016, 73, 2278-2287.	2.5	3
32	Regime shifts in marine communities: a complex systems perspective on food web dynamics. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152569.	2.6	41
33	Maintained functional diversity in benthic communities in spite of diverging functional identities. Oikos, 2016, 125, 1421-1433.	2.7	43
34	Novel biodiversity baselines outpace models of fish distribution in Arctic waters. Die Naturwissenschaften, 2016, 103, 8.	1.6	30
35	Opportunistic basal resource simplifies food web structure and functioning of a highly dynamic marine environment. Journal of Experimental Marine Biology and Ecology, 2016, 477, 92-102.	1.5	34

The Role of Drifting Algae for Marine Biodiversity. , 2016, , 100-123.

#	Article	IF	CITATIONS
37	Context-dependent consequences of Marenzelleria spp. (Spionidae: Polychaeta) invasion for nutrient cycling in the Northern Baltic Sea. Oceanologia, 2015, 57, 342-348.	2.2	25
38	Seasonal small-scale variation in distribution among depth zones in a coastal Baltic Sea fish assemblage. ICES Journal of Marine Science, 2015, 72, 2374-2384.	2.5	11
39	Connecting the Seas of Norden. Nature Climate Change, 2015, 5, 89-92.	18.8	25
40	Impact of eutrophication and climate change on fish and zoobenthos in coastal waters of the Baltic Sea. Marine Biology, 2015, 162, 141-151.	1.5	55
41	Effects of macroalgal accumulations on the variability in zoobenthos of high-energy macrotidal sandy beaches. Marine Ecology - Progress Series, 2015, 522, 97-114.	1.9	32
42	Baltic Sea ecosystem-based management under climate change: Integrating social and ecological perspectives. Ambio, 2015, 44, 333-334.	5.5	3
43	Environmental context and trophic trait plasticity in a key species, the tellinid clam Macoma balthica L Journal of Experimental Marine Biology and Ecology, 2015, 472, 32-40.	1.5	16
44	Nestedness of trophic links and biological traits in a marine food web. Ecosphere, 2015, 6, 1-14.	2.2	26
45	Large-scale effects of green tides on macrotidal sandy beaches: Habitat-specific responses of zoobenthos. Estuarine, Coastal and Shelf Science, 2015, 164, 379-391.	2.1	23
46	Marine benthic ecological functioning over decreasing taxonomic richness. Journal of Sea Research, 2015, 98, 49-56.	1.6	63
47	Long-term progression and drivers of coastal zoobenthos in a changing system. Marine Ecology - Progress Series, 2015, 528, 141-159.	1.9	20
48	Food web positioning of a recent coloniser: the North American Harris mud crab Rhithropanopeus harrisii (Gould, 1841) in the northern Baltic Sea. Aquatic Invasions, 2015, 10, 399-413.	1.6	13
49	Hypoxia in the Baltic Sea: Biogeochemical Cycles, Benthic Fauna, and Management. Ambio, 2014, 43, 26-36.	5.5	158
50	Fauna of the green alga Cladophora glomerata in the Baltic Sea: density, diversity, and algal decomposition stage. Marine Biology, 2013, 160, 2353-2362.	1.5	24
51	Long-term changes in coastal zoobenthos in the northern Baltic Sea: the role of abiotic environmental factors. ICES Journal of Marine Science, 2013, 70, 440-451.	2.5	46
52	Coastal Habitats as Surrogates for Taxonomic, Functional and Trophic Structures of Benthic Faunal Communities. PLoS ONE, 2013, 8, e78910.	2.5	36
53	Developing the multitrait concept for functional diversity: lessons from a system rich in functions but poor in species. Ecological Applications, 2012, 22, 2221-2236.	3.8	86
54	Modelling macrofaunal biomass in relation to hypoxia and nutrient loading. Journal of Marine Systems, 2012, 105-108, 60-69.	2.1	41

#	Article	IF	CITATIONS
55	A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biology, 2012, 18, 422-434.	9.5	148
56	Drifting filamentous algal mats disturb sediment fauna: Impacts on macro–meiofaunal interactions. Journal of Experimental Marine Biology and Ecology, 2012, 420-421, 77-90.	1.5	33
57	Hypoxia Is Increasing in the Coastal Zone of the Baltic Sea. Environmental Science & Technology, 2011, 45, 6777-6783.	10.0	364
58	Ichnological trends along an open-water transect across a large marginal-marine epicontinental basin, the modern Baltic Sea. Sedimentary Geology, 2011, 241, 40-51.	2.1	30
59	Structural and functional shifts in zoobenthos induced by organic enrichment — Implications for community recovery potential. Journal of Sea Research, 2011, 65, 8-18.	1.6	55
60	Zoobenthos as an environmental quality element: the ecological significance of sampling design and functional traits. Marine Ecology, 2011, 32, 58-71.	1.1	32
61	Scale-dependent distribution of soft-bottom infauna and possible structuring forces in low diversity systems. Marine Ecology - Progress Series, 2011, 426, 13-28.	1.9	20
62	Biomass, diversity and production of rocky shore macroalgae at two nutrient enrichment and wave action levels. Marine Biology, 2010, 157, 29-47.	1.5	65
63	Invertebrate dispersal and habitat heterogeneity: Expression of biological traits in a seagrass landscape. Journal of Experimental Marine Biology and Ecology, 2010, 390, 106-117.	1.5	70
64	A neighbour is a neighbour? Consumer diversity, trophic function, and spatial variability in benthic food webs. Journal of Experimental Marine Biology and Ecology, 2010, 391, 101-111.	1.5	20
65	Thiaminase Activity of Crucian Carp <i>Carassius carassius</i> Injected with a Bacterial Fish Pathogen, <i>Aeromonas salmonicida</i> subsp <i>. salmonicida</i> . Journal of Aquatic Animal Health, 2009, 21, 217-228.	1.4	13
66	The spreading of eutrophication in the eastern coast of the Gulf of Bothnia, northern Baltic Sea – An analysis in time and space. Estuarine, Coastal and Shelf Science, 2009, 82, 152-160.	2.1	32
67	Tackling Hypoxia in the Baltic Sea: Is Engineering a Solution?. Environmental Science & Technology, 2009, 43, 3407-3411.	10.0	95
68	Hypoxia-Related Processes in the Baltic Sea. Environmental Science & Technology, 2009, 43, 3412-3420.	10.0	470
69	Temporal variability of a benthic food web: patterns and processes in a low-diversity system. Marine Ecology - Progress Series, 2009, 378, 13-26.	1.9	42
70	The Impact of Benthic Macrofauna for Nutrient Fluxes from Baltic Sea Sediments. Ambio, 2007, 36, 161-167.	5.5	102
71	Zoobenthos as Indicators of Ecological Status in Coastal Brackish Waters: A Comparative Study from the Baltic Sea. Ambio, 2007, 36, 250-256.	5.5	43
72	The Effect of Spatial and Temporal Heterogeneity on the Design and Analysis of Empirical Studies of Scaleâ€Dependent Systems. American Naturalist, 2007, 169, 398-408.	2.1	151

#	Article	IF	CITATIONS
73	Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Marine Ecology - Progress Series, 2007, 332, 11-23.	1.9	187
74	Infaunal responses to seagrass habitat structure: A study of life-history traits and population dynamics of Corophium volutator (Pallas). Marine Biology Research, 2006, 2, 398-410.	0.7	6
75	Drifting Algae as a means of Re-Colonizing Defaunated Sediments in the Baltic Sea. A Short-Term Microcosm Study. Hydrobiologia, 2006, 554, 83-95.	2.0	30
76	The impact of infauna (Nereis diversicolor and Saduria entomon) on the redistribution and biomass of macroalgae on marine soft bottoms. Journal of Experimental Marine Biology and Ecology, 2006, 333, 58-70.	1.5	17
77	Zoobenthic diversity-gradients in the Baltic Sea: Continuous post-glacial succession in a stressed ecosystem. Journal of Experimental Marine Biology and Ecology, 2006, 330, 383-391.	1.5	185
78	A multivariate assessment of coastal eutrophication. Examples from the Gulf of Finland, northern Baltic Sea. Marine Pollution Bulletin, 2005, 50, 1185-1196.	5.0	43
79	Life in the fast lane: macrobenthos use temporary drifting algal habitats. Journal of Sea Research, 2005, 53, 169-180.	1.6	47
80	Effects of depth, sediment and grazers on the degradation of drifting filamentous algae (Cladophora) Tj ETQq0 0 93-109.	0 rgBT /0 1.5	verlock 10 Tf 37
81	Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia, 2004, 514, 227-241.	2.0	110
82	Long-term changes in macrozoobenthos in the Ã…land archipelago, northern Baltic Sea. Journal of Sea Research, 2004, 52, 45-56.	1.6	54
83	Baltic Sea eutrophication: area-specific ecological consequences. , 2004, , 227-241.		29
84	Seasonal and inter-annual variation in occurrence and biomass of rooted macrophytes and drift algae in shallow bays. Estuarine, Coastal and Shelf Science, 2003, 56, 1167-1175.	2.1	66
85	Temporal and Spatial Large-Scale Effects of Eutrophication and Oxygen Deficiency on Benthic Fauna in Scandinavian and Baltic Waters 'Ã,,ì a Review. Oceanography and Marine Biology, 2002, , 427-489.	1.0	64
86	Small-scale spatial structure of Baltic Sea zoobenthos—inferring processes from patterns. Journal of Experimental Marine Biology and Ecology, 2002, 281, 123-136.	1.5	39
87	Long-term Changes of a Brackish-water Eelgrass (Zostera marina L.) Community Indicate Effects of Coastal Eutrophication. Estuarine, Coastal and Shelf Science, 2002, 55, 795-804.	2.1	60
88	Some ecological properties in relation to eutrophication in the Baltic Sea. Hydrobiologia, 2002, 475/476, 371-377.	2.0	54
89	Changes in zoobenthic community structure after pollution abatement from fish farms in the Archipelago Sea (N. Baltic Sea). Marine Environmental Research, 2001, 51, 229-245.	2.5	30
90	Giving Advice on Cost Effective Measures for a Cleaner Baltic Sea: A Challenge for Science. Ambio, 2001, 30, 254-259.	5.5	35

#	Article	IF	CITATIONS
91	Drifting algal mats as an alternative habitat for benthic invertebrates:. Journal of Experimental Marine Biology and Ecology, 2000, 248, 79-104.	1.5	200
92	Zoobenthic community establishment and habitat complexity-the importance of seagrass shoot-density, morphology and physical disturbance for faunal recruitment. Marine Ecology - Progress Series, 2000, 205, 123-138.	1.9	140
93	Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: A functional-group approach. Austral Ecology, 1999, 24, 312-326.	1.5	172
94	Juvenile flounder, Platichthys flesus (L.), under hypoxia: effects on tolerance, ventilation rate and predation efficiency. Journal of Experimental Marine Biology and Ecology, 1999, 242, 75-93.	1.5	41
95	Predation by juvenile flounder (Platichthys flesus L.): a test of prey vulnerability, predator preference, switching behaviour and functional response. Journal of Experimental Marine Biology and Ecology, 1998, 227, 221-236.	1.5	40
96	The relative impact of physical disturbance and predation by <i>Crangon crangon</i> on population density in <i>Capitella capitata</i> : An experimental study. Ophelia, 1997, 46, 1-10.	0.3	11
97	Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research, 1997, 37, 153-166.	1.6	224
98	Coastal eutrophication: Causes, consequences and perspectives in the Archipelago areas of the northern Baltic Sea. Estuarine, Coastal and Shelf Science, 1997, 44, 63-72.	2.1	235
99	Temporal and spatial variation of dominant pelagic Copepoda (Crustacea) in the Weddell Sea (Southern Ocean) 1929 to 1993. Polar Biology, 1997, 18, 280-291.	1.2	10
100	Passing the gut of juvenile flounder, Platichthys flesus : differential survival of zoobenthic prey species. Marine Biology, 1997, 129, 11-14.	1.5	40
101	Effects of predation and oxygen deficiency on different age classes of the amphipod Monoporeia affinis. Journal of Sea Research, 1996, 35, 345-351.	1.6	11
102	Food and feeding habits of juvenile flounder Platichthys flesus (L.), abd turbot Scophthalmus maximus L. in the åland archipelago, northern Baltic Sea. Journal of Sea Research, 1996, 36, 311-320.	1.6	97
103	Altered Benthic Preyâ€Availability Due to Episodic Oxygen Deficiency Caused by Drifting Algal Mats. Marine Ecology, 1996, 17, 355-372.	1.1	81
104	The Effects of Reduced Oxygen Content on Predation and Siphon Cropping by the Brown Shrimp, <i>Crangon crangon</i> . Marine Ecology, 1996, 17, 411-423.	1.1	18
105	Rapid zoobenthic community responses to accumulations of drifting algae. Marine Ecology - Progress Series, 1996, 131, 143-157.	1.9	189
106	Population responses of coastal zoobenthos to stress induced by drifting algal mats. Marine Ecology - Progress Series, 1996, 140, 141-151.	1.9	160
107	Characterization of soft-bottom benthic habitats of the Ãland Islands, northern Baltic Sea. Marine Ecology - Progress Series, 1996, 142, 235-245.	1.9	34
108	Structuring zoobenthos: the importance of predation, siphon cropping and physical disturbance. Journal of Experimental Marine Biology and Ecology, 1995, 192, 125-144.	1.5	51

ERIK BONSDORFF

#	Article	IF	CITATIONS
109	Seasonal variation in abundance and diet of the sand goby <i>Pomatoschistus minutus</i> (Pallas) in a northern Baltic archipelago. Ophelia, 1993, 37, 19-30.	0.3	46
110	Effect of the abundance of three predominating copepod species on adequate sample volume and sample size in Bransfield Strait (Antarctic Peninsula) and waters north of the Weddell Sea. Polar Biology, 1992, 12, 679.	1.2	1
111	Drifting algae and zoobenthos — Effects on settling and community structure. Journal of Sea Research, 1992, 30, 57-62.	1.0	112
112	Temporal and Spatial Variability of Zoobenthic Communities in Archipelago Waters of the Northern Baltic Sea-Consequences of Eutrophication?. International Review of Hydrobiology, 1991, 76, 433-449.	0.6	24
113	Fish predation and habitat complexity: are complexity thresholds real?. Journal of Experimental Marine Biology and Ecology, 1990, 141, 183-194.	1.5	89
114	Ecosystem Variability and Gradients. Examples from the Baltic Sea as a Background for Hazard Assessment. Springer Series on Environmental Management, 1989, , 6-58.	0.3	29
115	Predation as a mechanism of interference within infauna in shallow brackish water soft bottoms; experiments with an infauna predator, Nereis diversicolor O.F. Müller. Journal of Experimental Marine Biology and Ecology, 1988, 116, 143-157.	1.5	76
116	Appetite and food consumption in the sea urchin Echinus esculantes L. Sarsia, 1983, 68, 25-27.	0.5	7
117	Effects of experimental oil exposure on the fauna associated withCorallina officinalisL. in intertidal rock pools. Sarsia, 1983, 68, 149-155.	0.5	15
118	The use of the log-normal distribution of individuals among species in monitoring zoobenthos in the northern Baltic archipelago. Marine Pollution Bulletin, 1982, 13, 324-327.	5.0	6
119	The Antonio Gramsci oil spill Impact on the littoral and benthic ecosystems. Marine Pollution Bulletin, 1981, 12, 301-305.	5.0	34
120	Fate and effects of Ekofisk crude oil in the littoral of a Norwegian fjord. Sarsia, 1981, 66, 231-240.	0.5	16
121	A conceptual framework for marine biodiversity and ecosystem functioning. Marine Ecology, 0, 28, 134-145.	1.1	82
122	Eutrophication and hypoxia: impacts of nutrient and organic enrichment. , 0, , 202-243.		3